MAHENDRA ARTS & SCIENCE COLLEGE

(AUTONOMOUS)

(Affiliated to Periyar University)

[Accredited by NAAC 'A' Grade & Recognized u/s 2(f) and 12(B) of the UGC act 1956]

KALIPPATTI-637501

MASTER OF SCIENCE

SYLLABUS FOR M.Sc. BIOTECHNOLOGY

OUTCOME BASED EDUCATION - CHOICE BASED CREDIT SYSTEM

FOR THE STUDENTS ADMITTED FROM THE ACADEMIC YEAR 2019 – 2020 ONWARDS

MAHENDRA ARTS & SCIENCE COLLEGE

(Autonomous)
(Affiliated to Periyar University)

Department of Biotechnology

REGULATIONS FOR M.Sc. BIOTECHNOLOGY DEGREE COURSE WITH SEMESTER SYSTEM AND CBCS PATTERN (Effective from the academic year 2019-2020)

I. PREAMBLE

Biotechnology has grown, extensively in last couple of decades. This advanced 'interdisciplinary' life science branch has a tremendous networking potential with modern cutting edge technology. This has given it a separate status in fundamental research as well as in modern industrial enterprise. Global and local focus has slowly shifted to not only current "Century of Knowledge" but also on to technology development and application in life sciences. In the milieu of research and industrialization for economic development and social change, biotechnology is an ideal platform to work.

The proposed credit-based curriculum and outcome based education system will even add much more to the existing interdisciplinary nature of biotechnology and will also offer many courses to the other branches of life science. The generative power of biological data is effectively harnessed by biotechnology like no other field. The relevance and application of these studies on living organisms and their bioprocesses is extensively covered in this field with the help of technology. Education and research sectors require such interdisciplinary trained workforce to develop future generations of science leaders.

II. PROGRAMME OBJECTIVES

- ❖ To help the students to build interdisciplinary approach.
- ❖ To expertise students in the field of biotechnology and industry needs and providing solutions for product/processes/technology development.

- ❖ To develop confidents among students to work as entrepreneurs and biotechnologist with strong ethics and practical skills.
- ❖ To pursue higher education and research in reputed institute at National and International level.

III. PROGRAMME OUTCOMES

- 1 Post Graduates will gain knowledge of Biotechnology, Science and Technology concepts to solve problems related to field of Biotechnology.
- 2 Post Graduates will be able to justify societal, health, safety and legal issues and understand his responsibilities in biotechnological practices
- 3 Post Graduates will be able to undertake any responsibility as an individual and as a team in a multidisciplinary environment.
- 4 Post Graduates will have thorough knowledge in Life sciences and will also be ready to engage them in lifelong learning.

IV. REGULATIONS

These regulations shall take effect from the academic year 2019-2020, i.e, for students who are to be admitted to the first year of the course during the academic year 2019-2020 and thereafter.

1. Eligibility for Admission

A candidate who has passed a Bachelor degree in Science with Biotechnology / Botany / Zoology / Biology / Microbiology / Microbial Gene technology/Bioinformatics / Biochemistry /Agriculture / Marine Biology / Home Science / Farm Science / Nutrition and Dietetics / Integrated Biology / Plant Science / Animal Science / Fisheries Science / Aquaculture / Medical Lab Technology / MBBS / BDS / B. Pharm / BSMS of this University or any of the above degree of any other University accepted by syndicates as equivalent thereto, subject to such conditions as may prescribed therefore shall be permitted to appear and qualify for the M.Sc., Biotechnology Degree Examination of this University after a course of study of two academic years.

2. Duration of the Programme

The candidates shall complete all the courses of the programme in 2 years from the date of admission. The programme of study shall consist of four semesters and a total period of two years with a minimum of 90 credits. The programme of study will comprise the course according to the syllabus.

3. Programme of Study

The Programme of study for the PG degree Programmes of all branches shall consist of the following:

- (i) Core courses
- (ii) Electives courses
- (iii) Skill Enhancement Courses
- (iv) Extra Disciplinary Course
- (v) Project
- (vi) Enhancement Compulsory Courses.

4. Examinations

The Programme of study shall be based on semester pattern with Internal Assessment under Choice Based Credit System.

The examinations for all the papers consist of both Internal (Continuous Internal Assessment - CIA) and External (End Semester) theory examinations. The theory examinations shall be conducted for three hours duration at the end of each semester. The candidates failing in any subjects(s) will be permitted to appear for the same in the subsequent semester examinations.

V. STRUCTURE OF THE PROGRAMME:

SEMESTER: I

Course	Title of the Course		Hr: We	s / ek	No. of	IV.	Iax. Ma	ark
Category		Code	L	P	Credits	Int.	Ext.	Total
CORE COURSE - I	Cell Biology	M19PBT01	4	-	4	25	75	100
CORE COURSE -II	Biological Chemistry	M19PBT02	4	-	4	25	75	100
CORE COURSE -III	Molecular Biology	M19PBT03	4	-	4	25	75	100
CORE COURSE - IV	Microbiology	M19PBT04	4	1	4	25	75	100
ELECTIVE COURSE	Elective-I		4	-	3	25	75	100
CORE PRACTICAL- I	Practical - I- Cell Biology and Biological Chemistry	M19PBTP01	1	5	4	40	60	100
CORE PRACTICAL- II	Practical - II- Microbiology and Molecular Biology	M19PBTP02	ı	5	4	40	60	100
	Total		20	10	27	205	495	700

SEMESTER: II

Course	Title of the Course	Course	Hrs Wee	•	No. of	Max. Mark		
Category		Code	L	P	Credits	Int.	Ext.	Total
CORE COURSE - V	Genetic Engineering and rDNA Technology	M19PBT05	4	-	4	25	75	100
CORE COURSE - VI	Immunology and Immunotechnology	M19PBT06	4	-	4	25	75	100
CORE COURSE - VII	Bioprocess Technology	M19PBT07	4	-	4	25	75	100
*ELECTIVE COURSE	Elective -II		4	-	3	25	75	100
EDC			4		4	25	75	100
CORE PRACTICAL- III	Practical - III- Genetic Engineering and rDNA technology	M19PBTP03	ı	4	4	40	60	100
CORE PRACTICAL- IV	Practical-IV- Immunology and Bioprocess technology	M19PBTP04	-	4	4	40	60	100
ENHANCEMENT COMPULSORY COURSE	Human Rights	M19PHR01	2	-	2	25	75	100
Comprehensive E	xamination-I	M19PBTC01	-	-	1 30	-	-	100
	Total					330	570	900

*Note: The Open Book examination to be conducted for this course

SEMESTER: III

Course	Title of the Course		Hr: We	-	No. of	IM.	lax. Ma	ark
Category		Code	L P		Credits	Int.	Ext.	Total
CORE COURSE - VIII	Plant Biotechnology	M19PBT08	4	ı	4	25	75	100
CORE COURSE - IX	Animal Biotechnology	M19PBT09	4	1	4	25	75	100
CORE COURSE - X	Environmental Biotechnology and Nanotechnology	M19PBT10	4	-	4	25	75	100
CORE COURSE - XI	Proteomics and Genomics	M19PBT11	4	1	4	25	75	100
ELECTIVE COURSE	Elective-III		4	1	3	25	75	100
CORE PRACTICAL- V	Practical - V-Plant and Animal Biotechnology	M19PBTP05	-	5	4	40	60	100
CORE PRACTICAL- VI	Practical - VI- Environmental Biotechnology, Proteomics and Genomics	M19PBTP06	-	5	4	40	60	100
	Total		20	10	27	205	495	700

SEMESTER: IV

Course	Title of the Course	Course Code	Hrs / Week		No. of Credits	Max. Mark		
Category	Course	Code	L	P	Credits	Int.	Ext.	Total
*CORE COURSE - XII	Research methodology and Research Proposal Development	M19PBT12	4	-	4	25	75	100
CORE PROJECT	Project	M19PBTPR1	1	24	4	40	60	100
	Internship	M19PBTIS01	-	2	2	40	60	100
Comprehensi	ve Examination-II	M19PBTC02	-	-	1	100	-	100
Total				26	11	205	195	400
Grant Total				54	95*	945	1755	2700

^{*}Note: The Open Book examination to be conducted for this course

^{*}The students will gain extra credits for successful completion of online courses from SWAYAM / MOOC.

Summary of Credits, Hours and Mark Distribution

Course		Cre	dits		Total	Total	No. of	Max.
Category	Ι	II	III	IV	Credits	Hours	Courses	Marks
Core	16	12	16	4	48	48	12	1200
Core Practical	8	8	8	-	24	28	6	600
Elective	3	3	3	-	9	12	3	300
EDC	-	4	-	-	4	4	1	100
Project	-	-	-	4	4	24	1	100
Human Rights	-	2	-	-	2	2	1	100
Internship	-	-	-	2	2	2	1	100
Comprehensive		1		1	2		2	200
Exam	-	_	_	•		_		200
TOTAL	27	30	27	11	95*	120	24	2700

^{*}The students will gain extra credits for successful completion of online courses from SWAYAM / MOOC.

ELECTIVE SUBJECTS FOR M.Sc. STUDENTS

Semester	ELECTIVE - I	
	Course Title	Course Code
	Biophysics & Bioinstrumentation	
I	Soil Science	
	Human Physiology	
	Horticulture	
	ELECTIVE - II	
	Course Title	Course Code
	Cancer Biology	
II	Enzyme and Enzyme Technology	
	Clinical Biochemistry	
	Aquaculture	
	ELECTIVE - III	
	Course Title	Course Code
	Biostatistics	
	Marine Biotechnology	
III	Stem cell Biology and Tissue	
	Engineering	
	Apiculture	

EXTRA DISCIPLINARY COURSES OFFERED FOR OTHER DEPARTMENT STUDENTS

Semester	Course Title	Course Code
II	Agro Biotechnology	
11	Health care and environmental biotechnology	

VI. SCHEME OF EXAMINATION:

1. Question Paper Pattern for Theory Examination

Time: Three Hours Maximum Marks: 75

Part A: $(10 \times 1 = 10)$

Answer ALL Questions

(Objective Type - Two Questions from each unit)

Part B: $(5 \times 2 = 10)$

Answer ALL Questions

(One Question from each unit)

Part C: $(5 \times 5 = 25)$

Answer ALL Questions

(One Question from each unit with internal choice)

Part D: $(3 \times 10 = 30)$

Answer Any Three out of Five Questions (One Question from each unit)

2. Question Paper Pattern for Practical Examination

Time: Six Hours Maximum Marks: 60

 Major Practical
 =
 20 Marks

 Minor Practical
 =
 10 Marks

 Spotters (5×4=20)
 =
 20 Marks

 Viva Voce
 =
 05 Marks

 Record
 =
 05 Marks

 Total
 =
 60 Marks

3. Distribution of Marks:

The following are the distribution of marks for external and internal for End Semester Examinations and continuous internal assessment and passing minimum marks for Theory/Practical / Project courses of PG programmes.

End Semester Examination	EA Total	Passing Minimum for EA	CIA Total	Passing Minimum for CIA	Total Marks Allotted	Passing Minimum (ESE)
Theory	75	38	25	12	100	50
Practical	60	30	40	20	100	50
Project	60	30	40	20	100	50

The following are the Distribution of marks for the Continuous Internal Assessment in Theory / Practical papers of PG programmes.

THEORY

EVALUATION OF INTERNAL ASSESSMENT

Test : 10 Marks
Seminar : 05 Marks
Assignment : 05 Marks
Attendance : 05 Marks

Total: 25 Marks

The Passing minimum shall be 50% out of 25 marks (12 marks)

PRACTICAL

EVALUATION OF INTERNAL ASSESSMENT

Test 1 : 15 Marks Test 2 : 15 Marks Record : 10 Marks

Total : 40 Marks

The Passing minimum shall be 50% out of 40 marks (20 Marks)

PROJECT

EVALUATION OF INTERNAL ASSESSMENT

Review 1 : 10 Marks
Review 2 : 10 Marks
Review 3 : 10 Marks
Pre-Viva : 10 Marks

Total : 40 Marks

The Passing minimum shall be 50% out of 40 marks (20 marks)

4. Passing Minimum:

The Candidates shall be declared to have passed the examination if he/she secures not less than 50 marks in total (CIA mark + Theory Exam mark) with minimum of 38 marks in the End Semester Theory Examinations.

The Candidates shall be declared to have passed the examination if he/she secures not less than 50 marks in total (CIA mark + Practical Exam mark) with minimum of 30 marks in the End Semester Practical Examinations.

5. Submission of Record Note Books for Practical Examinations

Candidates appearing for practical examinations should submit a bonafide record note books prescribed for practical examinations. The candidates failed to submit the record book shall not be permitted to appear for the practical examinations

7. Project

The following guidelines to be followed for the Project with Viva-voce:

- 1. The project should be valued for 60 marks by an external examiner; however the Viva-Voce examination should be conducted by both the external examiner appointed by the College and the internal examiner / guide/ teacher concerned.
- 2. The Project Report may consist a minimum of 60 pages.
- 3. The candidate has to submit the Project Report 20 days before the commencement of the VI Semester Examinations.
- 4. A candidate who fails in the Project/Dissertation or is absent may resubmit the report, on the same topic, with necessary modification / correction / improvements in the subsequent Even Semester Examinations for evaluation and shall undergo viva-voce Examination.

VII. Note

SWAYAM / MOOC - Free Online Education

SWAYAM / MOOC is an instrument for self-actualisation providing opportunities for a life-long learning. Here the student can choose from hundreds of courses, virtually every course taught at the college level, offered by the best teachers in India and elsewhere.

The students can choose an online SWAYAM / MOOC course during their period of study which will earn an extra credit and it will be transferred to the academic records of the students.

SEMESTER I

Core - I	M.Sc., Biotechnology	2019-2020
Code: M19PBT01	CELL BIOLOGY	
Credits: 4	CELL BIOLOGI	

Objective

To provide information about cells, including their composition, function and cell-cycle checkpoints.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Describe the fundamental principles cellular biology	K1
CO2	Understand the cell, cell cycle and Cell signaling	K2
CO3	Understand the cellular components underlying mitotic and meiotic cell division.	K2
CO4	Give the ideas about cell organelles	К3
CO5	Discuss the Understand the development of model organisms and stem cell types, uses in tissue repair	K2

UNIT I

Structure and functions of Prokaryotic and Eukaryotic cells- Cell-wall, Cell Membrane, Cell organelles - Nucleus, Mitochondria, Plastids, Endoplasmic Reticulum, Golgi complex, Lysosomes, Microtubules, Centriole, Vacuole, Cilia and Flagella.

UNIT II

Chromosome structure and functions – Giant chromosomes, Lamp brush and Polytene Chromosomes, Karyotype analysis, Chromosome abnormalities.

UNIT III

Cell cycle: overview of cell cycle-control system, Regulation of the Cell Cycle, Mitosis, Meiosis, Molecular control involving checkpoints in cell division cycle. Differentiation, Cellular senescence.

UNIT IV

Cell signaling – types, Chemical signals and cellular receptors, G Protein-linked receptors, Protein Kinase-associated receptors, Growth factors as messengers, Cell signals and Apoptosis, Cytoskeleton: microfilaments-intermediate filaments-microtubules.

UNIT V

Development of Multicellular organisms- yeast, *Caenorhabditis elegans* and *Arabidopsis thaliana*, *Drosophila melanogaster*, Stem cells, types, use of stem cells to repair damaged tissues.

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Cell and Molecular Biology	P.K.Gupta	Rastogi Publishers	2002
2.	Molecular Cell Biology	Lodish et al.	WH Freeman	2004

REFERENCE BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Cell and Molecular Biology	De Robertis	Waverly publication	2004
2.	Reproduction in Eukaryotic cells	D.M.Presco	Academic Press	1976
3.	Molecular Biology of the Cell	Alberts	Garland publication, 4 th edition	2002
4.	Developmental Biology	SF. Gillbert	Sinauor Associates Inc.	2016
5.	Cell in Development and Inhertiance	EB Wilson	MacMillan, New York	1996
6.	Molecular Biology of steroid and nuclear hormone receptors	Birkhuser	LP Freeman	1998
7.	Cell and Molecular Biology	Gerald Karp	Wiley Publishing Inc	1999
8.	The world of Cell, 6 th edition	Becker,W.M et.al.	Pearson Education	2007

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	M	S
CO2	S	M	S	M	S
CO3	M	M	S	S	S
CO4	S	S	M	M	M
CO5	M	M	S	S	S

S-Strong; **M**-Medium

SEMESTER I

Core - II	M.Sc. Biotechnology 2019 - 202		
Code: M19PBT02	BIOLOGICAL CHEMISTRY		
Credit: 4	BIOLOGICAL CHEMISTRY		

Objective

To provide knowledge about biomolecules classification, synthesis, metabolism and their role in living cells.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Impart knowledge about acid, bases, buffers, pH and thermodynamic principles	К3
CO2	Make knowledge about carbohydrate and lipid classification and its metabolism	K2
CO3	Impart knowledge of amino acid, protein structure and classification	К3
CO4	Make Knowledge about secondary metabolites of living organism Understand the basic principles of nucleotide metabolism	К3
CO5	Understand the basic principles of hormones function and the impact of vitamin and minerals in human health	K4

UNIT I

Principles of thermodynamics- First and second laws of Thermodynamics. Free energy – Concepts of metabolism: Types- Catabolism and anabolism with reference to pathways. pH, pK, acids, bases, buffers.

UNIT II

Sugars-Classification and reactions, polysaccharides-types, structural features, methods for compositional analysis. EMP pathway, TCA cycle. Lipids-Classification, structure and functions. Beta oxidation of fatty acids cholesterol biosynthesis

UNIT III

Aminoacids - Classification, chemical reactions. Proteins-Classification, hierarchy in structure, Ramachandran plot. Protein sequencing, Glyco and Lipoproteins- Structure and function.

UNIT IV

Biosynthesis of purines and pyrimidines- De Novo and salvage pathway. Secondary metabolites in living systems: Alkaloids, Steroids and Flavonoids.

UNIT V

Vitamins-Fat soluble and water soluble vitamins. Role of vitamins in human health. Hormones: Definition, Classification of hormones. Biological functions and disorders of pancreatic hormone (Insulin), thyroid hormone (Thyroxin), Hypothalamus and pituitary hormone (GH, TSH, GTH, ADH) Hormones and reproduction-Hormones in pharmaceuticals.

TEXT BOOKS:

S. No	Title of the Book	Author	Publishing Company	Year of Publication
1.	Fundamentals of Biochemistry	J.L. Jain	S.Chand publications	2004
2.	Essentials of Biochemistry	U.Sathyanarayanan	Books and allied (p) Ltd	2002
3.	Understanding Chemistry	CNR Rao	Universities Press, Hyderabad	1999

REFERENCE BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Fundamentals of Biochemistry	Donald Voet, Judith G.Voet and Charlotte W Pratt	John Wiley & Sons, NY	1999
2.	Biochemistry	lubert stryer	W H freeman and co, Sanfrancisco	1994
3.	Text book of biochemistry	Thomas M devlin	A John Wiley, In.	1997
4.	Biochemical Calculations	Irwin H.Segal	John Wiley and Sons Inc	2010

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	M	M	M	S
CO2	M	M	M	S	S
соз	S	S	M	M	S
CO4	S	M	S	S	S
CO5	S	S	S	M	S

S-Strong; **M**-Medium.

SEMESTER I

Core - III	M.Sc Biotechnology 2019-20			
Code: M19PBT03	WOLDOW AD DIOLOGY			
Credit: 4	MOLECULAR BIOLOGY			

Objective

To provide detailed idea about gene organization and expression of prokaryotic and eukaryotic organisms.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	To understand the basic concept of molecular biology and mechanism of nucleotide	K2
CO2	Describes the detailed knowledge about prokaryotic and eukaryotic transcription and its regulatory mechanism	K2
CO3	Describes the detailed knowledge about prokaryotic and eukaryotic translation with the protein synthesis and localization	КЗ
CO4	To understand the oncogene expression and its structure and function	К3
CO5	To understand the molecular markers and its various applications.	К3

UNIT I

Introduction of molecular biology, Central dogma of molecular Biology. DNA Replication - Mechanism of Prokaryotic and Eukaryotic DNA replication, Enzymes and accessory proteins involved in DNA replication.

UNIT II

Transcription - Prokaryotic and Eukaryotic transcription, RNA polymerase, transcription factors, Regulatory elements and mechanisms of transcription regulation, Transcriptional and post-transcriptional gene silencing. Modifications in RNA. 5' cap formation, 3'-end processing and Polyadenylation, Splicing, Editing, Nuclear export of mRNA.

UNIT III

Translation -Prokaryotic and eukaryotic translation, the translation machinery, Mechanisms of initiation, elongation and termination, Regulation of translation, co-and post- translational modifications of proteins. Protein Localization. Synthesis of Secretory and membrane proteins, import into nucleus, mitochondria and chloroplast.

UNIT IV

Oncogenes and Tumor Suppressor Genes-Viral and cellular oncogenes, tumor suppressor genes from humans, Structure, function and mechanisms of action of pRB and p53 tumor suppressor proteins.

UNIT V

Molecular Mapping, physical mapping and map based cloning, Southern and fluorescence in situ hybridization, RFLP, RAPD and AFLP analysis, Molecular markers linked to disease resistance genes, Application of RFLP in forensic, disease prognosis, genetic counseling.

REFERENCE BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Molecular cloning A Laboratory Manual	J.Sambrook, E.F.Rritsch and I.Maniatis	Cold Spring Laboratory Press, New York	2000
2.	Introduction to Practical Molecular Biology	P.D.Dabre	John Wiley and Son Ltd	1988
3.	Molecular Biology	Labfax, T.A.Brown J.D.Watson,	Bioscientific publishers ltd	1991
4.	Molecular Biology of gene	N.H.Hopkins, J.W.Roberts, J.A.Steitz and A.M.Weiner	The Benjamin/Cummings publications C Inc.California	1987
5.	Molecular Cell Biology	J.Darnell, H.Lodish and D.Baltimore	American Book, USA	1994
6.	Gene VII	Benjamin Lewin	Oxford University Press	
7.	Molecular Biology and Biotechnology A comprehnsive dies reference	R.A.Meyers	VCH Publishers, Inc	1995
8.	Molecular Biology and Biotechnology	J.M.Walker and R.Rapley	Willey	2005

Core - IV	M.Sc. Biotechnology 2019 - 202	
Code: M19PBT04	MICROBIOLOGY	
Credit: 4		

Objective

To understand better knowledge about history of microbiology and development, medical microbiology and genetic mutations.

Course Outcomes

On the successful completion of the course, students will be able to

СО	CO Statement	Knowledge	
Number	CO Statement	Level	
	Understand the history , development		
CO1	and Visualization using different	K1	
	microscopy study		
CO2	Understand the microbial growth	K2	
002	regulation and cultivation of microbes.	112	
CO3	Understand the physiological parameters	К3	
	required for the microbial growth.	NO .	
CO4	Describes the microbial infections to the	К3	
	animals and human	Ko	
	Describes the details of the microbial		
CO5	genetics-Mutations, transformations and	К3	
	viral life cycle		

UNIT I

History and development of microbiology. Microscopy- bright field, dark field, Electron. Sterilization, Control of microorganisms by physical and chemical methods. Bacterial taxonomy and classification according to Bergy's manual. Stains and staining methods-simple, differential and special staining.

UNIT II

Microbial Growth-mathematical expression of growth, growth curve, measurement of growth. Synchronous culture and Continuous culture. Factors affecting microbial growth. Culture media and their types. Pure Culture Techniques-Serial dilution methods - spread plate - pour plate - streak plate technique. Culture collection and preservation of microbial cultures.

UNIT III

Nutritional requirements and types of microorganisms, uptake of nutrients by microorganisms. Photosynthetic microorganisms. Nitrate and sulfur oxidizing bacteria, nitrate and sulfate reducing bacteria. Nitrogen fixation. Hydrocarbon transformation. Role of microorganism in agriculture, food and diary industry.

UNIT IV

Host – parasite relationship, normal microflora. Causative agent, pathogenesis and control measures of typhoid, cholera, tuberculosis, AIDS, hepatitis, malaria and candidiasis. Antimicrobial agents and their mode of action – antibacterial, antiviral, antifungal, antiparasitic agents.

UNIT V

Mutation and Mutagenesis; UV and chemical mutagens; Types of mutation; Ames test for mutagenesis; Methods of genetic analysis – Transformation, Conjugation, Transduction, Recombination. Plasmids and Transposons. Bacterial genetic maps with reference to $\it E.~coli$ – Viruses and their genetic system – Phage life cycle, Genetic systems of yeast and Neurospora .

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
	Microbiology, 5 th	Pelczar MJ ,	Tata McGraw Hill	
1	Edition	Chan ECS,	Publishing	2006
		and Krieg NR	Company	
2.	Microbiology	Pelzer, Chan	McGraw-Hil.	1986
	5 th Edition	and Kreig.	McGraw-Hii.	
2	Microbiology	Prescott, Harley,	McGraw Hill Publ	2003
3.	5 th Edition	Klein	McGraw Hill Publ	2003
4	Microbiology, 7 th	Benson HJ	McGraw Hill	1999
	Edition	Delison II)	MCGIAW IIII	1999

REFERENCE BOOKS:

S. No.	Title of the	A 4 1	Dublishing Company	Year of
	Book	Author	Publishing Company	Publication
1.	Microbial	S.Meenakumari	MJP Publishers	2004
	Physiology			
2.	General	Powar and	Himalaya	2010
	Microbiology.	Daginawala.	Publishing House	

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5
CO1	M	M	S	S	S
CO2	S	M	M	S	S
CO3	M	S	M	S	S
CO4	S	S	S	M	S
CO5	S	M	S	M	M

S- Strong; **M**-Medium.

SEMESTER I

Elective

Elective - I	M.Sc., Biotechnology 2019-202			
Code: M19PBTE01	DIODUNGICO AND DIOINGEDUATIVE			
Credits: 3	BIOPHYSICS AND BIOINSTRUMENTATION			

Objective

To introduce fundamental concepts of biophysics and to focus on the bioanalytical techniques.

Course Outcomes

On the successful completion of the course, students will be able to

СО	CO Statement	Knowledge
Number	oo statement	Level
CO1	Understanding various structure, types and stability of proteins and nucleic acids	K1
CO2	Understand the basic principles and maintains of spectral analysis like UV, FT-IR, MALDI-TOF.	K2
CO3	Make knowledgeable and learn about different centrifugation and electrophoresis techniques	КЗ
CO4	Impart knowledge about different chromatographic techniques	K4
CO5	Understand about different imaging techniques and its application	К3

UNIT I

Scope and methods of Biophysics. Understanding various structure of proteins, globular and fibrous protein; protein stability; protein folding. The physics of nucleic acids: Forces stabilizing structures; Double helical structures, properties and forms of DNA.

UNIT II

Colorimeter-Beer Lambert's law, UV-Visible spectroscopy, Atomic absorption spectroscopy, Flame photometer, IR and Raman Spectroscopy, Spectroflurometry, Mass Spectrophotometry- Matrix assisted layer desorption ionization and surface enhanced laser desorption ionization.

UNIT III

Centrifugation – Basic Principle of Centrifugation, Instrumentation of Ultracentrifuge (Preparative, Analytical), Rate-Zonal centrifugation, sedimentation equilibrium Centrifugation. Electrophoresis (Gel Electrophoresis, Paper Electrophoresis).

UNIT IV

Chromatography- Paper chromatography- Thin layer chromatography- Column chromatography- LPCC and HPLC, Affinity chromatography, Partition chromatography, Ion exchange chromatography, Gel Permeation chromatography.

UNIT V

Basic concept and measurement of radioactivity. Radioisotope techniques – GM Counter, Liquid scintillation, flourimetry and its types. Physical Biomedical method of Imaging techniques, Intact biological structures (X- ray, CAT-SCAN, ECG, EEG, NMR) Autoradiography, X ray crystallography.

REFERENCE BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Biochemistry 2nd	Voet, D. & Voet, J.G.	John Wiely &	1995
	Edn		Sons	1993
2.	Bioinstrumentatio n	John Webster	John Wiely & Sons	2004
3.	Bioinstrumentatio n	Veerakumari	MJP Publishers	2006
4.	Biochemistry, 4th Edi	Zubay.G.L	WmC.Brown Publishers	1993

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	M	S	M	M
CO2	S	M	S	S	S
CO3	S	S	M	M	S
CO4	M	M	S	S	S
CO5	S	S	S	M	S

S- Strong; **M**-Medium.

SEMESTER I

Elective - I	M.Sc., Biotechnology 2019 - 2020			
Code: M19PBTE02	SOIL SCIENCE			
Credit: 3	SOIL SCIENCE			

Objective

To impart basic knowledge about soil physical properties and processes in relation to plant growth.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Understand composition, phase system, texture, properties and mineralogical composition of soil.	K2
CO2	Knowledge and understanding of the soil structure, classification, soil aggregation, factors influencing the soil structure and plant growth	K2
CO3	Impart knowledge of factors influencing Soil consistency, Cohesion, Adhesion, Soil moisture, Forms of soil water, and water energy concept	K4
CO4	Understand the knowledge about Water flow in saturated and unsaturated soil and Soil Moisture Characteristic Curve	К3
CO5	Knowledge about soil air composition, thermal property and plant growth system.	K4

UNIT I

Definition and composition of soil, Soil as three phase system (solid, liquid and gas), Soil texture, Influence of soil texture on soil properties, Various methods of estimation of soil texture. Classification according to various systems, Soil mineralogical composition.

UNIT II

Clay and its classification, Soil Structure and soil aggregation, Classification of soil structure. Factors influencing soil structures and plant growth. Factors Influencing Bulk density, Particle density and Porosity.

UNIT III

Soil consistency, Cohesion, Adhesion. Forms of consistency, Factor influencing soil consistency, Plasticity. Soil moisture, Forms of soil water. Water – energy concept, Soil moisture potential.

UNIT IV

Water flow in saturated and unsaturated soil. Infiltration, Redistribution, Evaporation, Water balance in field. Soil Moisture Characteristic Curve. Hysteresis. Soil water movement. Saturated Flow, Unsaturated Flow.

UNIT V

Factor Influencing Soil Air Composition. Effect of soil aeration on plant growth. Soil temperature and its importance, Thermal properties of soil. Effect of soil temperature on soil properties and on plant growth.

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1	Soil Physics	Baver, L. D., Gardner, W. H. and Gardna, W. R.	John Wiley, New York.	1972
2	Soil Physics	Oswal, M. C.	Oxford IBH, New Delhi	1994
3	Applied Soil Physics	Hanks and Ascheroft	Springer– Verlag, Berlin	1980
4	Environmental Soil Physics	Hillel, D.	Academic Press, New York	1998

5	Introduction to Soil Physics	Hillel, D	Academic Press, New York	1982
6	Application of Soil Physics.	Hillel, D.	Academic Press, New York.	1980

REFERENES BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1	Soil Physics	Khanke, H.	McGraw Hill Publishing Co., New Delhi	1968
2	Advanced Soil Physics	Kirkham, D. and Powers, W. L.	Wiley Interscience	1972
3	Soil Physics	Ghildyal, B. P., K. P. Tripathi.	Wiley Eastern Limited, New Delhi	1987

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5
CO1	M	S	M	M	S
CO2	S	S	M	M	S
CO3	S	M	M	S	M
CO4	S	M	M	S	M
CO5	M	S	M	S	M

S- Strong; **M**-Medium.

SEMESTER I

Elective - I	M.Sc. Biotechnology 2019 - 202			
Code: M19PBTE03	HUMAN PHYSIOLOGY			
Credit: 3	HUMAN PHISIOLOGI			

Objective

To provide the knowledge about structure and functions of different anatomical features relating to human physiology.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Understand composition and functions of different blood components	K2
CO2	Make knowledgeable about role of human digestive system in digestion and absorption of food	К3
CO3	Impart knowledge of central nervous system and molecular signaling mechanism of hormones.	K4
CO4	Learn about human circulatory system	K4
CO5	Make knowledge about role of kidney in human excretory system	К3

UNIT I

Blood- Composition and functions of plasma, hemopoiesis, erythrocytes including Hb, leukocytes and thrombocytes, plasma proteins and their role. Blood coagulation – mechanism and regulation, Fibrinolysis, Blood groups and Rh factor. Buffer systems of blood.

UNIT II

Digestive system- Composition, functions and regulation of salivary, gastric, pancreatic, intestinal and bile secretions. carbohydrates, lipids, proteins, nucleic acids, minerals and vitamins. Role of peristalsis and large intestine indigestion.

UNIT III

Nervous systems- Types of neurons and synapses and transmission of nerve impulse across them. Sensory receptors in skin and muscles. Endocrinology- effects of hormones of hypothalamus, pituitary, thyroid, adrenal gland and pancreas. Synthesis and functions of testosterone and ovarian hormones.

UNIT IV

Circulatory system- Structure of heart, conduction and regulation of heart beat, heart rate and output. Mechanism of berating, regulation of respiration, transfer of blood gases and pulmonary circulation.

UNIT V

Excretory system- Structure of nephron, formation of urine (glomerular filtration tubular reabsorption of glucose, water and electrolytes), role of kidneys in regulation of blood pressure. Control of body temperature.

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Textbook of Medical Physiology	Arthur C. Guyton and John E. Hall	Harcourt Asia Pvt Ltd	2016
2.	Essential Medical Physiology	Leonard R. Johnson	Elsevier Academic Press	2003
3.	Endocrinology: An Integrated Approach	SS Nussey and SA Whitehead	BIOS Scientific Publishers	2001

REFERENCE BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Principles of Anatomy and Physiology	Gerard J. Tortora and Sandra Grabowski	John Wiley and Sons	2003
2.	Human Physiology: The Mechanisms of Body Function	Arthur J. Vander, James Sherman, Dorothy S. Luciano, Eric P. Widmaier, Hershel Raff and Hershal Strang	McGraw Hill Education	2003
3.	Medical Physiology: Principles for Clinical Medicine	Rodney R. Rhoades and David R. Bell	Lippincott Williams & Wilkins	2017
4.	Principles of Human Physiology	Cindy L. Stanfield and William J. Germann	Pearson Education	2004

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	M	S	S
CO2	M	M	M	S	S
CO3	S	M	M	M	S
CO4	M	M	S	M	S
CO5	M	M	S	S	S

S- Strong; **M**-Medium

SEMESTER-I

Elective - I	M.Sc., Biotechnology	2019 - 2020	
Code: M19PBTE04	HORTICULTURE		
Credit: 3	HORTICULTURE		

Objective

To emphasis on development of entrepreneurial potential and skills amongst the students in horticulture.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Understand the classification, importance and nutritional requirements of horticulture crops	K2
CO2	Knowledge about plant propagation methods, plant regulators uses.	K2
CO3	Impart knowledge of garden design, types and maintenance.	K4
CO4	Make knowledgeable and learn about floriculture and cultivation of commercial flowers and fruits.	КЗ
CO5	Understand basic concepts about green house, indoor gardening and its maintenance.	K4

UNIT I

Horticulture: Importance and scope of Horticulture, Classification of horticultural crops – fruits, vegetables crops, climate, soil, water, nutrition needs of horticultural crops,

UNIT II

Plant propagation methods, cutting, layering, grafting, budding, stockseion relationship. Use of plant regulators in horticulture.

UNIT III

Garden designs, types of gardens – formal, informal and kitchen garden, units of garden, hedge, border, topiary arches and lawn maintenance.

UNIT IV

Floriculture, cultivation of commercial flowers – rose and jasmines. Cultivation of important fruit trees – Mangoes and Banana.

UNIT V

Green house, Indoor gardening – Bonsai – flower arrangements – nursery management and maintenance.

TEXT BOOKS.

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1	Floriculture – fundamental and practices.	Lex Lauries & Victor H. Rice	McGraw Hill PublisherS	1950
2	Plant Propagation	Sandhu, M.K	Wiley Eastern Ltd.,New Delhi,	1989
3	Introduction to Horticulture	Kumar, N.	Rajalakshmi Publications	1997

REFERENCE BOOK:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1	Gardening in India,	Bose, T.K. & Mukherjee, D.	Oxford & IBH Publishing Co	1972

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	M	S	M
CO2	M	S	M	M	S
CO3	M	M	S	S	M
CO4	M	S	S	M	S
CO5	M	M	S	S	M

Core Practical - I	M.Sc. Biotechnology	2019 - 2020
Code: M19PBTP01	PRACTICAL - I - CELL BIOLOGY AND BIOLOGIC	
Credit: 4	CHEMISTRY	

Objective

To provide practical knowledge on techniques involved in cell biology and biological chemistry.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Know about microscope, cell size and its measurements and tissue sectioning using microtomy	K1
CO2	Understand mitosis and meiosis ,mounting of giant chromosomes, to prepare permanent slide using DPX and determine the sex chromatin of living cells	K2
CO3	Learn to calibrate pH meter, buffer preparation	K2
CO4	Quantitatively measure the amount of glucose, DNA, RNA, protein, starch, carbohydrate and amino acid	K4
CO5	Separate amino acid by paper and thin layer chromatography and protein purification using polyacrylamide gel electrophoresis	K4

CELL BIOLOGY

- 1. Principles of Microscopy and optics
- 2. Measurement of Cell size by Micrometry
- 3. Preparation of permanent slides DPX mount
- 4. Mitosis and Meiosis
- 5. Giant Chromosomes (Polytene-Chirnomous larvae)
- 6. Sex Chromatin (Barr Body)
- 7. Microtomy Demo

BIOLOGICAL CHEMISTRY

- 1. Preparation of Buffers
- 2. Calibration of PH meter
- 3. Verification of Beer Lambert's Law
- 4. Estimation of glucose (DNS method)
- 5. Estimation of DNA (Diphenylamine)
- 6. Estimation of RNA (Orcinol)
- 7. Estimation of Protein (Lowry's and Bradford Methods)
- 8. Extraction and Estimation of starch from potato/ tapioca
- 9. Separation of amino acids by Paper and Thin layer chromatography
- 10. Qualitative analysis of carbohydrate
- 11. Qualitative analysis of amino acids.
- 12. Native PAGE and SDS-PAGE

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Practical Clinical Biochemistry	Harold Varley	CBS publications	2005
2.	Cell Biology : Practical Manual	Renu Gupta, Seema Makhija, Dr. Ravi Toteja	Prestige Publishers	2018

REFERENCE BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	An Introduction To Practical Biochemistry	David Plummer	Tata McGraw Hill Education	2006
2.	Laboratory Manual For Practical Biochemistry	Shivaraja Shankara	Jaypee Brothers Medical Publishers	2013
3.	Practical Biochemistry	Damodaran Geetha K	Jaypee Brothers Medical Publishers	2016
		38		

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	M	S	M	S	S
CO3	M	M	M	S	S
CO4	M	S	S	M	S
CO5	M	M	S	S	S

Core Practical – II	M.Sc. Biotechnology	2019 - 2020		
Code: M19PBTP02	PRACTICAL - II - MICROBIOLOGY AND			
Credit: 4	MOLECULAR BIOLOGY			

Objective

To acquire skills and competency in microbiological and molecular biological laboratory practices applicable to research or clinical methods, including accurately reporting observations and analysis.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
	MICROBIOLOGY	
CO1	Learn sterilization techniques, media preparation, pure culture technique cultural characteristics, staining techniques and preservation of microbes	K1
CO2	Analyze biochemical characterization of Bacteria – Catalse test, oxidase test, Sugar fermentation, IMVIC, urease test, TSI test, Starch hydrolysis	K4
CO3	Perform antibiotic sensitivity test and measurement and stages of bacterial growth. Determination of potability of water by MPN method	K4
CO4	Induce Mutagenesis (UV, NTG & EMS)	КЗ
CO5	Isolate and detection single cell colony for antibiotic resistant bacteria , markers	K4

MICROBIOLOGY

- 1. Safety guidelines in laboratory practices.
- 2. Preparation of washing solution.
- 3. Handling of Microscopes
- 4. Sterilization Techniques Physical and chemical methods.
- 5. Preparation of broth and agar media
- 6. Maintenance of Microorganisms
- 7. Staining methods Simple staining, differential staining, special staining, and LCB mount.
- 8. Motility of bacteria by hanging drop method.
- 9. Biochemical characterization of Bacteria Catalse test, oxidase test, Sugar fermentation, IMVIC, urease test, TSI test, Starch hydrolysis.
- 10. Cultural characteristics of microorganisms on Basal medium, Selective medium, Differential medium, Enriched medium, Enrichment medium.
- 11.Isolation and pure culture of microorganisms from soil and water Serial dilution methods, Plating, Streaking.
- 12.Growth Growth curve, Measurement of bacterial population by turbidometry, haemocytometry and serial dilution methods.
- 13. Antibiotic sensitivity test by Kirby-Bauer disc diffusion method.
- 14. Determination of potability of water by MPN method.

MOLECULAR BIOLOGY

- 1. Single Cell Colony isolation Checking for antibiotic resistant Markers.
- 2. Induced Mutagenesis (UV, NTG & EMS).
- 3. Isolation of antibiotic resistant Bacteria by gradient plate technique.
- 4. Detection of mutations by replica plate technique.
- 5. Study of Mutation by Ames test.

SPOTTERS

- 1. Media NA, EMB, MSA
- 2. Culture techniques- Quadrant, T streak, Pour plate, Spread plate
- 3. Growth curve, Antibiotic sensitivity test
- 4. Instruments Autoclave, Hot air oven, Haemocytometer
- 5. Scientist Louis Pasteur, Edward Jenner, Leewenhoek
- 6. Mutation

TEXT BOOKS:

C No	Title of the			Year of
S. No.	Book	Author	thor Publishing Company	
	Microbiology: A	James G.	Harlow, England :	
1.	Laboratory	Cappuccino,	Pearson Education	2014
	Manual	Natalie Sherman	Limited (10th Ed)	

REFERENCE BOOKS:-

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
	Laboratory	W. F. Harrigan		
1.	Methods in	Margaret E.	Academic Press	1966
	Microbiology	McCanc		
	Laboratory Cell and		Jaypee	
0	3	IV IV Clasita assa	Brothers	0012
2.	Molecular Biology:	K.V.Chaitanya	Medical	2013
	A Lab Manual		Publishers	

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	
	MICROBIOLOGY					
CO1	M	M	S	S	S	
CO2	S	M	M	S	S	
CO3	M	M	M	S	S	
CO4	M	M	S	M	S	
CO5	S	S	M	M	M	

Core - V	M.Sc., Biotechnology	2019 - 2020		
Code: M19PBT05	GENETIC ENGINEERING AND rDNA TECHNOLO			
Credit: 4				

Objective

To impart the versatile tools and techniques employed in genetic engineering and recombinant DNA technology.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Understand the application of molecular enzymes	K1
CO2	Understand the concepts of vectors and its database	K2
СОЗ	To learn the gene cloning methods in theory and practice	К3
CO4	To learn the concepts of cloning strategy	КЗ
CO5	To learn genetic engineering of living organism for human benefit	КЗ

UNIT I

Manipulation of DNA- Restriction and modification enzymes: Restriction enzymes, Ligases, Alkaline phosphatase, Polynucleotide kinase, Terminal nucleotidyl transferase, DNA Polymerases, Taq DNA polymerases, RNAse, Reverse transcriptase. Linkers, Adaptors, Oligonucleotide primers & Homopolymer tailing.

UNIT II

Gene cloning vectors- Plasmids, Construction of pBR322, Bacteriophages vectors, phagemids, cosmids, Yeast vectors and Expression vectors in Prokaryotic and Eukaryotic, Ti plasmids, Vector NTI database,

UNIT III

DNA sequencing techniques- Maxam Gilbert method, Sanger's method, Next generation sequencing, DNA Amplification- PCR and its types, RFLP, RAPD, SAGE, Sitedirected Mutageneis, Molecular beacons, DNA hybridization and blotting techniques, Microarrays.

UNIT IV

Cloning strategies- Gene Library construction, Screening of gene library, Expression strategies for heterologous genes- expression in bacteria, yeast, insects and insect cell lines, mammalian cell lines and in plants. Processing of recombinant proteins-Purification and refolding, characterization of recombinant proteins, stabilization of proteins.

UNIT V

Transposon tagging- Role of gene tagging in gene analysis. Gene Knock in and out technologies, Transgenic animals (Mice, Cattle, Fish), Transgenic plants (Herbicide tolerance, Delayed ripening) Antisence RNA technology, Human Gene Therapy, Ethics and Philosophies in rDNA.

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	DNA Science - A First Course in Recombinant Technology	Mickloss D.A and G.A.Greyer	Cold Spring Harbor Laboratory Press, New York	1990
2.	Molecular biotechnology	Primrose, S.B P. R. Vittal and V. Malini,	Blackwell Scientific Publishers, Oxford (2nd Ed)	1994

REFERENCE BOOKS:

S. No.	Title of the Book	Author		Publishing (Company	Year Publication	of n
1.	Recombinant	James	D.	Scientific	American	2001	
	DNA	Watson		Books.	USA		
				Road,Chenn	ai-600029		
2.	Molecular	Glick,	В	ASM	Press,	2007	
	Biotechnology	Pasternak,	J.J	Washington			

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5
CO1	M	M	S	S	S
CO2	S	M	M	S	S
CO3	M	S	M	S	S
CO4	S	S	S	M	S
CO5	S	M	S	M	M

Core - VI	M.Sc. Biotechnology 2019 - 2020			
Code: M19PBT06	IMMUNOLOGY AND IMMUNOTEO	ישאטו טכע		
Credit: 4	- IMMUNOLOGI AND IMMUNOTECHNOLOGI			

Objective

To impart the principles and applications of immunology and immunotechnology.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	To understand the infection, immunity and immune system of living things	K1
CO2	To understand the various types of antigens and its characterization.	K2
CO3	To know about the antigen and antibody interaction and some practical approaches.	КЗ
CO4	To understand the concept of hypersensitivity and also the autoimmunity	КЗ
CO5	Give the sound knowledge about immunological techniques and immune diagnosis.	КЗ

UNIT I

History and scope of immunology, Host - Parasite relationship, Infection - types - mode of transmission, Immunity - types- mechanisms, Haematopoiesis. Organs of the immune system.

UNIT II

Antigen – properties- classes, haptens, mitogens, adjuvants, epitopes. Immunoglobulin- structure & function, molecular diversity. Immune responses-humoral immune response & cell mediated immune response. Generation of lymphocyte specificity and diversity, clonal selection of lymphocytes.

UNIT III

Antigen – Antibody reactions. Complements- components, properties, and activation path ways. Cytokines. Major histocompatibility complex –general organization and inheritance of MHC, structure –function- role in antigen processing and presentation. Immunological tolerance.

UNIT IV

Hypersensitivity – types, mechanisms, manifestations. Transplantation, immuno suppressive therapy, Autoimmunity- mechanism of auto immunization- types. Immunodeficiency diseases. Tumor immunology. Vaccines- Principles, Applications and development. Immunization Schedule.

UNIT V

Antigen-isolation and purification from pathogenic bacteria. Antibody production-Hybridoma technology and engineered monoclonal antibodies. Purification of antibodies. Isolation of macrophages. Macrophage culture. Immuno screening of recombinant library. Detection of immune complex in tissues. FACS. Delayed type hypersensitivity assessment –Mantoux test. Molecular aspects of HLA typing.

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Immunology and Immunotechnology	Rajasekara Pandian M and Senthilkumar	Panima Publishing Corporation , New Delhi	2007

2.	Immunology 6 th Edn	Goldsby RA, Kindt TJ.Osborne BA, Kuby J	WH Freeman &Co. New York	2003
3	Immunology 3 rd Edn	Kuby J	Freeman &Co. New York	1997
4	Immunology 4 th Edn	Benjamini E, Coico R and Sunshine G	A John Wiley & sons, Inc. Publication.	2000
5	Immunology 3 rd Edn	Roitt I,Brostoff J and Male D	Mosby	1993
6	Microbiology 5 th Edn	Pelczar MJ, Chan ECS and Krieg NR	Tata McGraw- Hill Publishing Company Ltd.New Delhi.	2006
7	Immunology 4 th Edn	Tizard IR	Saunders College Publishing Harcourt Brace College Publishers.	1995
8	A hand book of practical immunology. 2 nd Edn. VolII.	Talwar GP and Guptha	CBSPublications.	2004

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5
CO1	M	M	S	S	S
CO2	S	M	M	S	S
CO3	M	S	M	S	S
CO4	S	S	S	M	S
CO5	S	M	S	M	M

Core - VII	M.Sc. Biotechnology	2019 - 2020
Code: M19PBT07	BIOPROCESS TECHNOLOGY	
Credit: 4		

Objectives

To provide insight knowledge on wide-ranging topics related to bioprocess technology and its applications.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
	To understand the techniques for the	
CO1	isolation of microorganisms from the	К3
	various sources.	
CO2	Describes the methodology of storage and maintenance of the microorganisms	К3
	To understand the downstream and	
CO3	downstream process of the microbial	K4
	production	
	To understand the basic techniques and	
CO4	operating system of the instrument for	К3
	the bioprocess technology	
CO5	Describes the concept of downstream	K2
200	process	

UNIT I

Introduction to bioprocess engineering, isolation and screening of industrially important microbes. Advantages of bioprocess over chemical process. Strain improvement-various methods, Fermentations – submerged, solid state. Immobilization- principles and applications.

UNIT II

Media formulation. Sterilization-Thermal death kinetics. Batch and continues sterilization systems, Sterilization of air. Fibrous filters. Bioreactor design, parts and their functions. Types of reactors – CSTR, Tower, jet loop, Air left, bubble column and packed bed.

UNIT III

Transport phenomenon in bioprocess – Mass transfer, Mass transfer for gases and liquids. Dimensionless groups. Mass transfer resistance. Rate of oxygen transfer. Determination of oxygen transfer coefficients. Biological properties of medium. Biological heat transfer. Heat transfer coefficients.

UNIT IV

Bioprocess control and monitoring of variable such as temperature, agitation, pressure, pH. On line measurement. On/Off control, PID, Control. Computer applications in fermentation technology- components of a computer linked system, Data logging, Data analysis, process control.

UNIT V

Downstream processing - Foam separation, Precipitation, Filtration, Centrifugation, Cell disruption, Extraction, Chromatography, Membrane Process, Drying, Crystallization and whole broth processing.

REFERENCES BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Principles of Fermentation Technology	Peter F. Stanbury. Butterworth- Heinemann	Elsevier Science Ltd	2016
2.	Biotechnology: A Text Book of Industrial Microbiology	Wulf Crueger and Anneliese Crueger	Science Tech Publishers.USA.	1991
3	Fermentation Biotechnology	Jayanto Achrekar	Dominant Publishers and Distributors. New Delhi.	2006
4	Separation Process in Biotechnology	Juan.A.Asenjo	Taylor & Francis group.	2007

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5
CO1	M	M	S	S	S
CO2	S	M	M	S	S
CO3	M	S	M	S	S
CO4	S	S	S	M	S
CO5	S	M	S	M	M

Elective

Elective - II	M.Sc., Biotechnology 2019 - 202		
Code: M19PBTE05	CANCER BIOLOGY		
Credit: 3	CANCER BIOLOGI		

Objectives

To provide an in-depth idea about molecular and cellular basis of cancer cells and emphasize the biology of cancer.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Understand the regulation, signal of cell cycle, cell cycle in cancer	K2
CO2	Knowledge and understanding history, principle, metabolism of Carcinogenesis	K2
CO3	Impart knowledge Identification, detection of Oncogenes and growth factors related transformations.	K4
CO4	Understand the knowledge about tumour cell invasion, membrane disruptions and clinical significance.	КЗ
CO5	Knowledge about advanced detection of cancer and its different forms of therapy	K4

UNIT I

Regulation of Cell cycle, Mutations that cause changes in signal molecules, effects on receptor, signal switches, tumour suppressor genes, Modulation of cell cycle-in cancer, Different forms of cancers, Diet and cancer.

UNIT II

Chemical Carcinogenesis, Metabolism of Carcinogenesis, Natural History of Carcinogenesis, Targets of Chemical Carcinogenesis, Principles of Physical Carcinogenesis, X-Ray radiation – Mechanism of radiation Carcinogenesis.

UNIT III

Oncogenes, Identification of Oncogenes, Retroviruses and Oncogenes. Growth factor and Growth factor receptors that are Oncogenes. Oncogenes / Proto Oncogenes activity. Growth factors related to transformations.

UNIT IV

Clinical significances of invasion, heterogeneity of metastatic phenotype, Metastatic cascade, Basement membrane disruption, Three step theory of invasion, Proteinases and tumor cell invasion.

UNIT V

Different forms of therapy, Chemotherapy, Radiation Therapy, Detection of Cancers, Prediction of aggressiveness of Cancer, Advances in Cancer detection.

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1	Virology a practical approach,	Maly B.W.J	IRL press, Oxford	1987
2	Introduction to modern Virology,	Dunmock.N.J and Primrose S.B	Blackwell Scientific Publications Oxford	1988

REFERENCES BOOK:

S. No.	Title of the Book	Author	Publishing Company	Year of Publicatio n
1	Cancer Biology	King R.J.B	Addision Wesley Longmann Ltd, U.K	1996
2	Cancer Biology,	Ruddon.R.W	Oxford University Press, Oxford	1995

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	M	S
CO2	S	M	S	M	M
CO3	M	S	S	S	S
CO4	M	S	M	S	M
CO5	M	S	S	S	S

Elective - VI	M.Sc. Biotechnology	2019 - 2020
Code M19PBTE06		
Credit: 3	ENZYME AND ENZYME TECHNOLOGY	

Objectives

To provide a deeper insight into the fundamental and functional aspects of enzymology with biocatalysis, molecular modeling, structural biology and diagnostics.

Course Outcomes

On the successful completion of the course, students will be able to

со	CO Statement	Knowledge		
Number	Number			
CO1	Describe the basic knowledge about Enzymes and its types	K1		
CO2	Understand the concept of enzyme substrate interaction and their mechanisms	K2		
CO3	Describe the details of various pathway of regulations of the enzymes.	K2		
CO4	Understand the concept of physical parameters of enzymes.	K2		
CO5	Describes the application of the enzymes in industrial and product development	К3		

Unit I

Nomenclature and Classification of Enzymes. Criteria of purity of enzymes- Specific activity. Enzyme activity- chemical, Protein and Non protein enzymes- Ribozymes and DNAzymes. Metalloenzymes and metal activated enzymes. coenzymes. Classification and its types.

Unit II

Enzyme substrate interaction: Lock and key, Induced fit and Transition state Hypotheses. Mechanism of enzyme catalysis- Acid-base catalysis, covalent catalysis, Metal ion catalysis, Proximity and orientation effects etc. Mechanism of Serine proteases-Chymotryspin, Lysozyme, Carboxypeptidase A and Ribonuclease., Proenzymes (Zymogens). Reversible Inhibition and its types.

Unit III-

Enzyme Regulation: Feedback Regulation, Allosteric Regulation, Reversible Covalent Modification and Proteolytic Activation. Organisation of enzymes in the cell. Enzymes in the cell, localization, compartmentation of metabolic pathways, enzymes in membranes, concentrations. Mechanisms of enzyme degradation, lysosomal and nonlysosomal pathways.

Unit IV

Enzyme Kinetics: Factors affecting the enzyme activity- Concentration, pH and temperature. Kinetics of a single-substrate enzyme catalysed reaction, Michealis-Menten Equation, Km, Vmax, L.B Plot, Turnover number, Kcat. Kinetics of Enzyme Inhibition. Kinetics Allosteric enzymes.

Unit V

Application of Enzymes- Thermophilic enzymes, amylases, lipases, proteolytic enzymes in meat and leather industry, enzymes used in various fermentation processes, cellulose degrading enzymes, Metal degrading enzymes. Enzymes as thrombolytic agents, Anti-inflamatory agents, Biosensors. Enzyme Engineering and site directed mutagenesis, Designer enzymes

TEXT BOOK:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Enzyme Technology	Webb, Carlos Ricardo Soccol, Christian	Springer	2006
2.	Enzymes	Larroche Trevor Palmer, Philip Bonner	East West	2008
3.	Enzymology and Enzyme Technology	Bhatt S.M.	S Chand & Company	2014
4.	Principles of Enzyme Technology	M. Y. Khan, Farha Khan	PHI Learning	2015

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5
CO1	M	S	M	S	S
CO2	S	M	S	M	M
CO3	M	S	M	M	S
CO4	S	M	S	S	S
CO5	M	S	M	S	M

ELECTIVE- II	M.Sc. Biotechnology 2019 - 2020			
Code: M19PBTE07	CLINICAL BIOCHEMISTRY			
Credit: 3				

Objective

To provide the knowledge about various metabolic diseases linked with biochemical parameters and their clinical manifestations.

Course Outcomes

On the successful completion of the course, students will be able to

СО	CO Statement	Knowledge
Number	Number	
CO1	Understand types of carbohydrate and lipid metabolic disorders	K1
CO2	Make knowledgeable about amino acid and nucleic acid disorders	K2
CO3	Impart knowledge on different disorders associated with circulatory, repiratory digestive system of human	K4
CO4	Understand hormonal disturbances and mineral metabolic disorders	К3
CO5	Learn about disorders related to blood, enzyme and detoxification mechanism of human body	К3

UNIT I

Disorders of carbohydrate metabolism: Diabetes mellitus, glycohemoglobins, hypoglycemias, galactosemia and ketone bodies. Various types of glucose tolerance tests. Glycogen storage diseases. Physiology of lipids/lipoproteins. Lipidosis. Diagnostic tests for HDL-cholesterol, LDL-cholesterol and triglyceride disorders. Inborn errors of metabolism:

UNIT II

Disorders of amino acid metabolism- Phenylalanemia, homocystinuria, tyrosinemia, MSUD, phenylketonuria, alkaptonuria, albinism and animoacidurias. Disorders of nucleic acid metabolism- Disorders in purine/ pyrimidine metabolism.

UNIT III

Electrolytes, blood gases, respiration and acid-base balance. Disorders of acid-base balance and their respiratory and renal mechanisms. Diagnostic enzymes: Principles of diagnostic enzymology. Clinical significance of aspartate aminotransferase, alanine aminotransferase, creatine kinase, aldolase and lactate dehydrogenase. Enzyme tests in determination of myocardial infarction. Enzymes of pancreatic origin and biliary tract.

UNIT IV

Hormonal disturbances: Protein hormones (anterior pituitary hormones, posterior pituitary hormones), steroid hormones, adrenocorticosteroids, and reproductive endocrinology. Disturbances in thyroid function. Disorders of mineral metabolism: Hypercalcaemia, hypocalcaemia, normocalcaemia, hypophosphataemia and hyperphosphataemia.

UNIT V

Biochemical aspects of hematology: Disorders of erythrocyte metabolism, hemoglobinopathies, thalessemias thrombosis and anemias. Laboratory tests to measure coagulation and thrombolysis. Detoxification in the body: enzymes of detoxification, polymorphism in drug metabolizing enzymes. Mechanism of drug action and channels of its excretion, Disorders of vitamins and trace elements.

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Textbook of Medical Biochemistry	MN Chatterjea and Rana Shinde	Jaypee Brothers	2012
2.	Clinical Biochemistry	Richard Luxton	Scion Publishing Ltd	1999

REFERENCE BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Lehninger Principles of Biochemistry	David L. Nelson and Michael M. Cox	WH Freeman and Company	2017
2.	Davidson's Principles and Practice of Medicine	Walk Er	Elsevier	2018
3.	Medical Biochemistry	John W. Baynes and Marek Dominiczak	Mosby	2018
4.	Harper's Biochemistry	Robert K. Murray, Daryl K. Granner, Peter A. Mayes and Victor W. Rodwell	Appelton and Lange.	1993
5.	Clinical Biochemistry: An Illustrated Colour Text	Michael Murphy, Rajeev Srivastava, Kevin Deans.	Elsevier	2018

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	M	M	S	S
CO2	M	M	S	S	S
CO3	S	S	S	S	S
CO4	S	M	S	M	S
CO5	S	M	S	M	S

Elective- II	M.Sc. Biotechnology 2019 - 2020			
Code: M19PBTE08	AQUACULTURE			
Credit: 3	AQUACULTURE			

Objective

To provide the knowledge about aquaculture and its applications.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Understand to setup the fish farms.	K1
CO2	Impart knowledge on identification of various types of aquaculture stratigies.	K2
CO3	Provide knowledge seed culture development and cultivation.	K4
CO4	Understand about nutritional requirements and feed formulation to various crops.	КЗ
CO5	Provide knowledge about other economic important verities in aquaculture.	КЗ

UNIT I

Definition of aquaculture – Principles of site selection for fish farms, water, soil, types and otherparameters.

UNIT II

Types of aquaculture - Monoculture, Poly culture, Integrated farming,

Pond culture, Pen and Cage culture, Raft culture, Race way culture, Warm and
cold water fish culture.

UNIT III

Criteria for selection of variety – Seed procurement and stocking management. Water quality management.

UNIT IV

Nutritional requirements and formulation of artificial diets. Breeding and culture of fresh water fishes – Catla, Mrigala, Rohu and Tilapia.

UNIT V

Mari culture – Culture of edible oyster, pearl oyster, mussels, clams, sea urchins, sea cucumbers.

TEXT BOOK

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Fish and Fisheries in India	Jhingran,V.G.,	Hindustan Publishing Corporation	1982
2.	Home Aquarium:aquatic gema and tropical fish	Annan, J.F, R.O.Smiterman and G. Tehebenoglous	Oregan State University	1983

Core Practical- III	M.Sc. Biotechnology 2019 - 202			
Code: M19PBTP03	PRACTICAL - III - GENETIC ENGINEERING AND			
Credit: 4	rDNA TECHNOLOGY			

Objective

To provide hands on training of versatile techniques employed in genetic engineering and recombinant DNA technology.

Course Outcomes

On the successful completion of the course, students will be able to

со	CO Statement	Knowledge
Number	oo statement	Level
CO1	Isolate genomic DNA, plasmid DNA and Phage DNA. Gain the knowledge about replica plating, Learn about bacteriophage Life cycle	K2
CO2	Quantify nucleic acid, protein content of sample	K2
CO3	Know about bacterial transformation , conjugation mechanism	КЗ
CO4	Understand the procedure of restriction, ligation, principle to amplify DNA sequence using PCR	K4
CO5	RFLP and RAPD	K1

- 1. Agarose gel electrophoresis
- 2. Selection of genetic marker IPTG-X-Gal, GUS assay
- 3. Isolation of genomic DNA & Detection in AGE
- 4. Isolation of plasmid DNA & Detection in AGE
- 5. Screening of Bacteriophages.
- 6. Isolation of Auxotrophic mutants Replica plate
- 7. Isolation of Lambda phage DNA

- 8. Quantification of Nucleic acid by UV spectrophotometer.
- 9. Quantification of protein by SDS-PAGE
- 10. Bacterial Transformation.
- 11. Bacterial Conjugation Uninterrupted & Interrupted
- 12. Restriction digestion
- 13. Ligation
- 14. Determination of molecular weight of Nucleic acids by Gel Doc.
- 15. Amplification of DNA PCR.
- 16. RFLP and RAPD (Demo).

SPOTTERS

- 1.Enzymes, Vectors
- 2. RAPD,RFLP,PCR,Electrophoresis,PAGE techniques
- 3. Conjucation, Transformation
- 4. Mutation

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Laboratory Manual for Genetic	S. John Vennison	1st Edition, Kindle Edition	2014
	Engineering	Vennigon	Edition	

REFERENCE BOOKS:

S.No.	Title of the Book Autho		Publishing	Year of
S.NO.	Title of the book	Author	Company	Publication
1	GeneticEngineering:	by Sandhya	Kindle Edition	2013
1.	Principles and Practice	Mitra		

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5
CO1	M	M	S	S	S
CO2	S	M	M	S	S
CO3	M	M	M	S	S
CO4	M	M	S	M	S
CO5	S	S	M	M	M

Core Practical - IV	M.Sc. Biotechnology 2019 - 2020		
Code: M19PBTP04	Practical - IV - IMMUNOLOGY AND BIOPROCESS		
Credit: 4	TECHNOLOGY		

Objective

To provide the practical knowledge about techniques involved in immunology and bioprocess technology.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Understand the separation of serum & plasma from the human blood samples and differential count of white blood cells	K1
CO2	Expertise to test, blood grouping, typhoid fever, antistreptolysin O (ASO) of group A <i>Streptococcus</i> infection. rheumatoid arthritis (RA) factor, pregnancy test from urine sample, rapid plasma reagin test to screen syphilis, various types of precipitation and agglutination reaction and measure antibodies, antigens, proteins and glycoproteins	K4
CO3	Knowing to antiserum development form laboratory animals	K4
CO4	Understand the technique for the isolation of Amylase antibiotic producing microbes, Culture optimization	K1
CO5	Produce industrial important products(amylase, protease, Antibiotics, citric acid, alcohol by submerged and solid state fermentation techniques.	K4

IMMUNOLOGY

- 1. Differential count of white blood cells
- 2. Preparation of serum & plasma
- 3. ABO Blood grouping
- 4. Widal test for typhoid fever (qualitative and quantitative test)
- 5. Anti Streptolysin O (ASO) test
- 6. Rheumatoid arthritis (RA) test
- 7. Pregnancy test Detection of HCG
- 8. Rapid Plasma Regain Test (RPR)
- 9. Ouchterlony's Double Immunodiffusion Technique (ODD)
- 10. Counter Current Immunoelectrophoresis (CIE)
- 11. Immuno Electrophoresis (IE)
- 12. Radial Immuno Diffusion (RID)
- 13. Rocket Immuno Electrophoresis (RIE)
- 14. Raising of antiserum in laboratory animals
- 15. ELISA

BIOPROCESS TECHNOLOGY

- 1. Isolation of Amylase and protease producing organisms from soil.
- 2. Isolation of antibiotic producing microbes from soil.
- 3. Culture optimization (pH, Temperature, Carbon & Nitrogen sources).
- 4. Production and assay of amylase and protease by submerged fermentation.
- 5. Production and assay of amylase and protease by solid-state fermentation.
- 6. Bioassay of Antibiotics.
- 7. Microbial production of citric acid using Aspergillus niger.
- 8. Immobilization of cells for enzyme production.
- 9. Alcohol production by yeast fermentation and its estimation.
- 10. Purification of enzymes by salting and dialysis and column chromatography techniques

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Manual of Allergy and Immunology	Adelman	Wolters Kluwer India Pvt. Ltd.	2012
2.	Laboratory Manual On Biochemistry, Bioprocess & Microbiology	Palvannan T, Shanmugam S, Satish Kumar T,	Scitech Publications (India) Pvt Lt	2006

REFERENCE BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Practical Immunology	Frank C. Hay, Olwyn M. R. Westwood	Wiley-Blackwell	2002

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5
Immunology					
CO1	M	M	S	S	S
CO2	S	M	M	S	S
CO3	M	M	M	S	S
CO4	M	M	S	M	S
CO5	S	S	M	M	M

Enhancement	M.Sc. Biotechnology	2019 - 2020
Compulsory Course		
Code: M19PHR01	HUMAN RIGHTS	
Credit: 2		

Objective

To present the different aspects of human and also to make the students to understand the duties to be carried out in the days to come.

Course Outcomes

On the successful completion of the course, students will be able to

со	Statement	Knowledge Level
CO1	Remember the need and types of Human rights	K1
CO2	Understand the Classification of Human Rights	K2
CO3	Apply the Rights of Women and Children	K4
CO4	Learn the Rights of Labour	K2
CO5	Analyze the National and State level human Rights Commission	КЗ

UNIT I

Human Rights: Meaning – Definitions – Origin and Growth of Human Rights in the World – Need and types of Human Rights – UNHRC (United nations Human Rights) – Human Rights in India.

UNIT II

Right to Liberty - Right to Life - Right to Equality - Right to dignity - Right to against Exploitation - Educational Rights - Cultural Rights - Economic Rights - political Rights - Social Rights.

UNIT III Rights of Women and Children:

Rights of Women – Female feticide and Infanticide and selective abortion - Physical assault and sexual harassment - Domestic Violence - Violence at work place - Remedial Measures. Rights of Children - Protection rights, survival rights - Participation rights - Development rights - Role of UN on convention on rights of children.

UNIT IV Multi-Dimensional aspects of Human Rights:

Labour rights - Bodend Labour - Child Labour - Contract Labour -Migrant Labour - Domestic Women Labour - Gender Equity - Rights of Ethnic refugees - Problems and remedies - Role of trade union in protecting the unorganizedlabourers.

UNIT V Grievance and Redressal Mechanism:

Redressal Mechanism at national level - Structure and functions of National and State level human Rights Commission – constitutional remedies and directive principles of state policy.

REFERENCE BOOKS:

S. No.	Author	Title of the book	Publishers / Edition	Year of Publication
1.	Barat Sergio and Swaronjali Ghosh	Teaching of Human Rights	Dominant Publishers and distributors, New Delhi	2009
2.	Roy A.N	Human Rights Achievements and Challenges	Vista International Publishing House, Delhi	2005
3.	Asish Kumar das and Prasant KumarMonaty	Human Rights in India	Sarup and Sons, New Delhi	2007
4.	Bani Bargohain	Human Rights Social justice and political change	Kanishka publishers and distributors, New Delhi	2007

5.	Velan G,	Human Rights and Development Issues	Ambala Cantt	2008
6.	Meena P K	Human rights Theory and Practice	Murali lal and Sons, New Delhi	2008
7.	Bhavani Prasad Panda	Human Rights Development and Environmental Law	Academic Excellence, Delhi.	2007
8.	Vishvanathan V N	Human Rights – Twenty first Century Challenges	Kalpaz Publications, New Delhi.	2008
9.	Ansari M.R	Protecting Human Rights	Max Ford Books, New Delhi.	2006
10.	Rao M.S.A	Social Movements in Indi – Social Movements and Social Transformation in India	Vol 1& 2: Manohar Publications, New Delhi.	1978

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	S	M	S	M
CO2	M	M	S	M	M
соз	S	S	M	S	S
CO4	M	M	S	M	S
CO5	S	M	S	S	M

Core - VIII	M.Sc. Biotechnology 2019 - 202	
Code :M19PBT08	PLANT BIOTECHNOLOGY	
Credit: 4		

Objective

To focus on classical and modern plant biotechnology processes and their applications.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Describe the concept of plant tissue culture, media preparation.	K1
CO2	Understand the sterilization techniques, somatic embryogenesis.	K2
CO3	Understand the concept protoplast isolation, somoclonal variation and secondary metabolites.	K3
CO4	Develop a deeper understanding gene transfer techniques, plant pathogen interaction and terminator seed concept.	K3
CO5	Understand the plant breeding, cryopreservation techniques, etc.	КЗ

UNIT I

History of plant tissue culture - Laboratory organization - Nutritional requirements of plant tissue culture. Media preparation - Types of media - MS media, Nitshs media, Whites media, Gamborgs media - Plant growth regulators. Plant tissue culture - principles. The concept of totipotency of cells.

UNIT II

Sterilization techniques; Plant micro propagation – micro grafting – advantages – virus elimination by culturing of meristem and shoot tip cultures;, Establishment and maintenance of callus and suspension cultures. Somatic embryogenesis - Synthetic seeds.

UNIT III

Haploid plant production, triploid production, Anther and microspore culture, embryo culture and embryo rescue. *In-vitro* pollination and fertilization. Protoplast isolation – fusion - Culture regeneration - somatic hybrids - cybrids. Somoclonal and Gametoclonal variation, Secondary metabolites.

UNIT IV

Gene transfer techniques in plants. Transgenic plants for insect resistance, fungus resistance, virus resistance, drought, cold and saline resistance. Molecular biology of plant pathogen interactions. Terminator seed concept.

UNIT V

Role of RFLP in Plant breeding, current status of plant transformation technologies. Production of therapeutic antibodies in plants. Edible vaccines from plants, Cryopreservation, Role of tissue culture in agriculture, forestry. Cryopreservation and germplasm conservation.

TEXT BOOKS:

S. No.	Title of the Book	Author	Publisher	Year of Publication
1	Plant Biotechnology	J. Hammond, P. McGarvey and V. Yusibov (Eds.)	Springer verlag	2000
2	Biotechnology in crop improvement	H.S. Chawla	International Book distributing Company	1998
3	Biotechnology	U.Satyanarayanan	Books and allied (p) Ltd.,	2005
4	Plant tissue culture	Kalyan Kumar De	New Central Book Agency; 1 st edition	2008

REFERENCE BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Plant Cell and Tissue Culture for the Production of Food ingredients	T-J.Fu, G.Singh and W.R.Curtis (Eds)	Kluwer Academic/Plenum Press	1999
2.	Practical Application of plant Molecular biology	R.J. Henry	Chapman and hall.	1997
3.	Elements of Biotechnology	P.K. Guptha	Rastogi and Co. Meerut	1996
4.	Tissue Culture Theory and Practice	S.S. Bhojwani and M.K. razdan		2004

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	M	S	S
CO2	S	M	S	S	S
соз	M	M	S	S	S
CO4	S	S	S	M	S
CO5	S	M	M	S	S

Core - IX	M.Sc., Biotechnology	2019-2021
Code: M19PBT09	ANIMAL BIOTECHNOLOGY	
Credits: 4	ANIMAL BIOTECHNOLOGI	

Objective

To focus on the basic principles of animal cell culture, its commercial production and applications.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Describe the fundamental principles of <i>In vitro</i> fertilization techniques	K1 & K2
CO2	Understand the Basic requirements of Animal cell culture	K2
CO3	Understand the basic gene transfer methods employed for animal cells	K2
CO4	Develop a deeper understanding and application of molecular techniques involved in animal cell culture	K1
CO5	Understand the production and recovery of products from transgenic animals	K2

UNIT I

Gametogenesis and fertilization in animals, Molecular events during fertilization, Artificial Fertilization methods (IVF, IUF, ICSI) and embryo transfer, Superovulation, Polycystic ovarian syndrome (PCOS), Collection and preservation of embryo, culture of embryos, culture of embryonic stem cells and its applications.

UNIT II

Fundamentals. Facilities and Applications. Media preparation for Animal cells culture. Types of cell culture: Primary and secondary cell culture, cell transformation, cell lines, stem cell culture. Tests: cell viability and cytotoxicity, cell synchronization, senescence and apoptosis. Organ culture and transplantation, Cryopreservation.

UNIT III

GMO (Genetically modified organism), methods of DNA transfer into animal cells - calcium phosphate co precipitation, micro-injection, electro oration, Liposome encapsulation. Hybridoma technology, Vaccine production.

UNIT IV

Mapping of human genome, Human Genome Project (HGP). RFLP, RAPD and its applications. Gene silencing, DNA finger printing and Forensic Science. Molecular diagnosis of Genetic disorders.

UNIT V

Transgenic animals. Production and recovery of products from animal tissue cultures: cytokines, Plasminogen activators, Blood clotting factors, Growth hormones, insulin Transgenic animals – Merits and demerits -Ethical issues in animal biotechnology.

REFERENCE BOOKS:

S. No.	Title of the Book	Author	Publishing Company Tata McGraw -Hill	Year of Publication
1.	Developmental Biology	Beril, N.J.	Publishing Company Ltd. New Delhi	1974
2.	An Introduction to Embryology	Balinsky, B.I.	Saunders, Philadelphia	1975.
3.	Genetic Engineering of Animals	Puller, A. (Ed).	VCH Publishers, New York	1993
4.	Gene Transfer and Expression Protocols – Methods in Molecular Biology Vol.7.	Watson, J.D., N.H.Hopkins, T.W.Roberts, J.A.Steitz and A.M. Weiner. E.J. Murray (Ed).	Humana Press,Totowa, NJ.	1991
5.	Recombinant DNA	Watson, J.D., M. Gilman, J. Witkouski and M.Zoller.	Scientific American Books, New York.	1992
6.	Animal Cell Culture: A practical approach.	Freshney, E. D.	John Wiley Pub.New York.	2000
7.	Animal Cell Culture Methods (Methods in Cell Biology. Vol. 57). Mammalian Cell	Mather, J.P. and Barnes, D. (Eds.).	Academic Press, London.	1998
8.	Biotechnology - A Practical Approach.	Butler, M. (Ed.).	Oxford Univ. Press, Oxford	1990
	Exploring Genetic Mechanisms	Singer, M. and P. Berg. (Ed.).	University Science Books, Sausilato, CA, USA.	1997

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Textbook of Animal biotechnology	B Singh, SK Gautam and MS Chauhan.	The Energy and Research Institute	1993
2.	Biotechnology: V: (Including Animal Cell Biotechnology, Immunology and Plant Biotechnology)	M.K. Sateesh	2nd Edition. New Age International	2010

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	M	S
CO2	S	S	S	S	M
CO3	M	S	S	S	S
CO4	S	S	M	M	M
CO5	M	S	S	S	S

Core - X	M.Sc. Biotechnology	2019 - 2020	
Code: M19PBT10	ENVIRONMENT BIOTECHNOLO	ENVIRONMENT BIOTECHNOLOGY AND	
Credit: 4	NANOTECHNOLOGY		

Objective

To provide an insight into the fundamentals and applications of environmental biotechnology and Nanotechnology.

Course Outcomes

On the successful completion of the course, students will be able to

СО	CO Statement	Knowledge
Number		Level
CO1	Describe the basic concept of air pollution and greenhouse effect	K1
CO2	Understand the concept of water pollution and waste water treatment	K1
CO3	Describe the necessity of degradation of inorganic wastes and degradation of xenobiotics	K2
CO4	Understand the basic knowledge nanotechnology and nanomaterials	K2
CO5	Understand the importance of nano sensors and drug delivery systems.	К3

UNIT I

Introduction, types, Measurement of air pollution. Global environmental problems in atmosphere - ozone depletion, greenhouse effect and acid rain.

UNIT II

Introduction, types, sources of water pollution. Biomonitoring of water pollution using algae, bacteria, plankton, macrophytes (Bioindicators). Waste water treatment - physical, chemical and biological treatment processes. Biotechnological approaches for industrial waste water treatment - dairy, distillery, tannery, sugar, and pharmaceutical industries. Bioremediation of oil spills.

UNIT III

Introduction, types of solid wastes. Biodegradation of inorganic and organic wastes and lignin. Solid waste disposal - land filling, incineration, composting, mushroom farming, vermiculture and biogas production. Processing of sugar factory wastes, residential and municipal wastes, coir wastes and sago wastes. Biodegradation of xenobiotics.

UNIT IV

Definition of a nano system - dimensionality and size dependent phenomena, Quantum dots, Nanowires and Nanotubes, 2D films. Methods for synthesis of Nanoscale Materials. Basic concepts and properties of nanostructured materials. Gold Nanoparticles. Nanopores. Characterization of Nanomaterials.

UNIT V

Nanosensors - types and its applications. Nanocarriers for Drug Delivery - Polymeric Nanoparticles as Drug Carriers. Micelles for Drug Delivery. Microarray and Genome Chips. Microemulsions as Drug Delivery Vehicles, Lipoproteins as Pharmaceutical Carriers. Solid Lipid Nanoparticles as Drug Carriers. Nanocapsules – preparation, characterization and Applications.

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Environmental Biotechnology.	Alan Scragg.	Pearson Education Limited, England	1999
2.	Environmental Chemistry	De,A.K.	Wiley Eastern Ltd. New Delhi.	2004
3.	Introduction to Biodeterioration.	Allsopp, D. and K.J. Seal.	ELBS/Edward Arnold, London	1986
4.	Nanotechnology: A Gentle Introduction to the Next Big idea.	Ratner, M. and Ratner, D	Pearson Education, Inc. NJ, USA.	2005
5.	Nanobiotechnology: Concepts, Application and Properties.	Christef M. Niemeyer, C. A. Mirkin	Wiley – VCH Publishers, New York.	2004
6.	Nanotechnology in Biology and Medicine: Methods, Devices and Applications.	Tuan Vo- Dinh.	Taylor and Francis Inc., London	2007
7.	Biological pharmaceutical	Challa S.S.R. Kumar (Ed).	Nanomaterial, Wiley- VCH Verlag Gmbh & Co, KgaA. Weinham, Germany.	2006
8.	Nanoparticulates as Drug Carriers.	Vladimir P.Torchilin (Ed.).	Imperial College Press, North Eastern University, USA. ISBN 1-86094	2006
9	Wastewater Engineering – Treatment, Disposal and Reuse.	Technoglous, G., Burton, F.L. and Stensel, H.D.	3 rd Edition. Metcalf and Eddy, Inc., Tata Mc Graw Hill, New Delhi.	1995
10	Environmental Biotechnology	Jogdand, S.N.	1 st Edition. Himalaya	1995

			Publishing House, Bombay.	
10	Nanobio-Technology in Molecular Diagnostics: Current Techniques and Applications.	Jain, K.K.	Horizon Biosciences, India.	2006
11	Nano Medicines	Parag Diwan and Ashish Bharadwaj	Pentagon Press. ISBN 81-8274- 139-4.	2006

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	M	M	M	S
CO2	S	S	M	M	M
CO3	M	S	M	S	M
CO4	S	S	S	M	M
CO5	S	M	S	M	S

Core - XI	M.Sc. Biotechnology	2019 - 2020			
Code: M19PBT11	PROTEOMICS AND GENOMICS				
Credit: 4					

Objective

To appraise the students to basic and high throughput techniques in Genomics and Proteomics and their applications.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	To understand the concept of sequencing techniques and molecular based techniques.	K1
CO2	To understand the various types of polymerase techniques, this is applicable in the field of diagnostic purposes.	К3
CO3	Describe the detailed information about the gene expression	K2
CO4	Application of the biological based tools for the protein and nucleotides.	К3
CO5	To understand the concept of separation techniques for the protein molecules.	КЗ

UNIT I

Introduction to Genomics: Definition of Genome, Genome sequencing, Genome mapping: Genetic mapping- DNA markers-RFLP,SSLP, SNP-Pedigree analysis; Physical mapping- Restriction site mapping, FISH, STS; Human genome project, Map repositories: NCBI – Entrez Human genome map viewer, OMIM (Online Mendelian Inheritance in Man).

UNIT II

Genome Annotations: Locating the Genes in a Genome Sequence, ORF Scanning, Exon-intron boundaries, cDNA hybridization, RT-PCR (Reverse transcriptase PCR), RACE (rapid amplification of cDNA ends), heterpduplex analysis, Exon trapping, Gene inactivation, Genetic footprinting, RNA interference, computational gene analysishomologus genes-orthologous, paralogous, ORF Finder, Genscan and GenomeThreader.

UNIT III

Functional Genomics: Transcriptomes, Transcriptome analysis, cDNA micro arrays, Raw data from microarrays, data quality, Gene expression matrices, grouping expression data, clustering methods, Feature reduction, Microarray data format, Micro array data analysis tools, gene pathway reconstruction, SAGE (Serial analysis of gene expression).

UNIT IV

Proteomics, amino acids-peptides and proteins- life cycle of a protein, sequencing of protein-N and C terminal sequencing- proteomics- tools and application of proteomics, 3D structure of protein- overview-protein secondary, tertiary, quaternary structure- protein Denaturation-protein folding- reverse turns- Ramachandran plot- Expasy tools.

UNIT V

Analytical proteomics-analytical protein and protein separation techniques- 1D SDSPAGE, isoelectric focusing, 2D SDS-PAGE, image analysis of 2D gels-HPLC-protein digestion techniques. Protein identification and analysis- Mass spectrometry-tandem mass spectrometry-peptide mass finger printing- SALSA algorithm-protein arrays, Protein expression profiling, protein-

protein interactions, prediction interactions based on domain fusion (yeast two hybrid system), mapping protein modifications.

REFERENCES BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Genomes, 2nd Edition	T.A.Brown	Oxford: Wiley-Liss.	2002
2.	Data analysis and visualization in genomics and proteomics,	Francisco Azuaje and Joaquin Dopazo	John wiley and sons, Lts	2005
3	Microarrys for Intergartive Genomics	Isaac S. Kohane, Alvin T Kho, Atul J.Butte	The MIT Press England	2003
4	Bioinformatics Instant notes series	D.R.Westhead, J.H.Parish and R.M. Twyman	BIOS Scientific Publishers ltd.	2002
5	Introduction to Proteomics- Tools for the New Biology	Daniel C Liebler	Springer Scintific Bussiness media LLC	2002
6	Principles of proteomics	Twyman R.M.	York: Garland Science/Bios Scientific publishers.	(2004)

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	M	M	S
CO2	S	M	M	S	S
CO3	S	S	M	M	S
CO4	S	M	S	M	M
CO5	S	M	S	M	M

Elective

Elective - III	M.Sc., Biotechnology	2019-2020		
Code: M19PBTE09	BIOSTATISTICS			
Credits: 3				

Objective

To understand the present up-to-date theory and techniques of statistical inference (estimation theory) in a logically integrated and practical form.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Know the correlation and methods of correlation	K1
CO2	Learn the basic concepts of inferential statistics	K2
CO3	Obtain the testing of hypothesis using statistical data	КЗ
CO4	Analyze the statistical data using single means and difference of mean	K4
CO5	Analyze data using the chi square test	K4

UNIT I

Correlation - Types and methods of correlation-Rank correlation.

UNIT II

Sampling Methods-Population, sample –Parameter- Statistics-Estimator-Standard error.

UNIT III

Test of significance-Hypothesis – Simple hypothesis – types of errors – level of significance – Tests based on small samples (t-test)

UNIT IV

Tests based on large samples – tests for single means, tests for difference of two means.

UNIT V

Chi – Square test- uses of Chi – square test goodness of fit and independence of attributes- Simple problems.

REFERENCE BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
	Fundamentals of	S.C.Gupta	Sultan Chand	
St	Mathematical	and V.K.	Publications- 10th	
	Statistics a	Kapoor	Edition 2000	2000
	Modern Approach			
		R.S.N.Pillai.	S.Chand Ltd.,	
2.	Statistics	and	New Delhi	2003
		V. Bagavathi.		2000

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5
CO1	M	M	S	S	S
CO2	S	M	M	S	S
CO3	M	S	M	S	S
CO4	S	S	S	M	S
CO5	S	M	S	S	S

Elective - III	M.Sc., Biotechnology	2019-2020
Code: M19PBTE10	MARINE BIOTECHNOLOGY	
Credits: 3	MAKIND	

Objective

To provide insight knowledge of marine biodiversity, its products, applications and its conservations.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Describe the fundamentals of oceans and seas, abiotic and biotic factors	K1 & K2
CO2	Understand the importance of marine biological diversity and role of phytoplankton, deep sea adaptation	K2
CO3	Identify the Marine bioactive compounds and organisms involved in the production of bioactive compounds	K2
CO4	Develop a deeper understanding and application of anti-cancer, anti-viral, anti-fungal, herbicides and biopesticides	K2
CO5	Understand the concept of marine conservation, factors creating diversity, protected areas and risk factors	КЗ

UNIT I

World oceans and seas – ocean currents – physical and chemical properties of sea water – abiotic and biotic factors of the sea – ecological divisions of the sea – history of marine biology – biogeochemical cycles – food chain and food web.

UNIT II

Importance of Marine biological diversity: species- Phytoplanktons – zooplanktons – nektons – benthos – marine mammals – marine algae – mangroves – coral reefs – deep sea animals and adaptation.

UNIT III

Identification of Marine bioactive compounds containing organisms, sea weeds, sea grasses, sponges, mollusks, Echinoderms – associated microbes.

UNIT IV

Anticancer – antiviral – antibacterial – antifungal compounds, Biopesticides, herbicides from Marine Microbes.

UNIT V

Marine conservation: Factors creating diversity in the sea; area of diversity, area to be protected, risk factors for population and species.

REFERENCE BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Handbook of Marine Biotechnology	Kim, Se-Kwon (Ed.)	Springer	2015
2.	Marine Biotechnology I	Le Gal, Yves, Ulber, Roland (Eds.)	Springer	2005
3.	Recent advances in Marine Biotechnology	M.Fingermann, R.Nagabushanam and Mary Frances Thompson	CRC Press, Francis and Taylor	2003

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Nutrients and Bioactive substances and aquatic organisms	K.Devadasan and M.K.Mukundan	Society of Fisheries Technologists India; Cochin (India)	1994

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	M	M	M
CO2	S	S	S	M	M
соз	M	S	S	S	S
CO4	S	S	S	S	M
CO5	M	S	S	S	S

Elective - III	M.Sc. Biotechnology	2019 - 2020
Code: M19PBTE11	STEM CELL BIOLOGY AND TISSUE	
Credit: 3	ENGINEERING	

Objective

To enable students to understand the principles, techniques and applications of stem cells and tissue engineering.

Course Outcomes

By the end of the course, the student should be able

CO Number	CO Statement	Knowledge Level
CO1	Describe the fundamental characteristics, properties and classification of stem cells	K2
CO2	To understand the potency, specification, differentiation of stem cells in model organisms, cell signaling in control pathways and checkpoints	K1
CO3	To provide the detailed knowledge of gene expression and stem cell communication. To understand the stem cell regeneration in various organs, tissues and stem cell disease, disorders	КЗ
CO4	Describe the principles of tissue culture, tissue engineering. It provides the knowledge of synthesis of organ and tissues in invitro and in vivo and its regulations	К3
CO5	To understand the transplantation techniques, bio artificial. bioprinting of tissues and organs.	КЗ

UNIT I

Stem Cells – Basics, Properties and Classification, Types of Stem cells – Hematopoietic Stem Cells, Mesenchymal Stem Cells, Embryonic Stem Cells, Fetal Stem Cells, Adult Stem cells and their Characteristics.

UNIT II

Pluripotency, niche specification – Drosophila germ line stem cells, self renewal and differentiation, Characteristics of stem cell – Cell cycle, Ras/Raf pathway, PI3 cell signaling, p53 check points, role of LIF pathway in cell cycle control.

UNIT III

Stem cell communications – gap junctions, cell fusion. Stem Cells in Gastrointestinal, Liver, Pancreas, Kidney, Heart, Spinal Cord and Lung Regeneration, Stem Cells in Eye Diseases and Disorders

UNIT IV

Morphogenesis, Principles of Tissue Culture, Bioreactor Design, Mechanochemical Regulation of Cell Behaviour, *In vitro* and *In vivo* Synthesis of Tissues and Organs.

UNIT V

Tissue Engineering and Transplantation Techniques, Immuno isolation Techniques, Modes of Cell and Tissue Delivery, Regeneration of Bone and Cartilage, Islet Cell transplantation and Bioartificial Pancreas, Bioprinting of Organs and Tissues.

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	The Stem Cell Hope: How Stem Cell Medicine Can Change Our Lives	Alice Park	Hudson street press	2012
2.	Adult Stem Cells: Biology and Methods of Analysis	Donald G. Phinney	Humana press	2014
3.	Stem Cells: An Insider's Guide	Paul Knoepfler	World scientific-kindle edition	2009
4.	Stem Cell Therapy: A Rising Tide: How Stem Cells Are Disrupting Medicine and Transforming Lives	Neil H Riordan	Kindle edition	2017
5.	Transforming Lives Stem Cells: A Very Short Introduction	Jonathan Slack	Kindle edition	2012

REFERENCE BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Essential of Stem Cell Biology.	R. Lanza, J. Gearhart et al (Eds)	Elsevier Academic press	2009
2.	Essential Stem Cells Methods.	R. Lanza and I. Klimanskaya.	Academic Press	2009
3.	Translational Approaches in Tissue Engineering & Regenerative Medicine	J. J. Mao, G. Vunjak- Novakovic et al (Ed)	Artech House, INC Publications	2008

4.	Principles of Tissue Engineering	Robert Lanza et al.,	Academic Press	2007
5.	Human Stem Cell Technology and Biology: A Research Guide and Laboratory Manual.	Stein et al	Wiley-Blackwell	2011
6.	Handbook of Stem Cells Embryonic Stem Cells; Volume 2- Adult & Fetal Stem Cells)	Lanza et al	Academic Press	2004

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5
CO1	M	M	S	S	S
CO2	S	M	M	S	S
CO3	M	S	M	S	S
CO4	S	S	S	M	S
CO5	S	M	S	M	M

Elective - III	M.Sc. Biotechnology 2019 - 202			
Code: M19PBTE12	APICULTURE			
Credit: 3	AIRODIORE			

Objective

To emphasis on development of entrepreneurial potential and skills amongst the students in apiculture.

Course Outcomes

After completing this course, students will be able to:

СО	CO Statement	Knowledge
Number	CO Statement	Level
CO1	Understand about the taxonomy, Bio-ecology and life history of honey bee.	K1
CO2	Gain the knowledge about bee colony, types and structure of bee hives.	K2
CO3	Learn the skills about apiary care and management.	K2
CO4	Gain the knowledge about Honey composition, bee wax and its uses and also explore the diseases of honey bees and their control methods	K2
CO5	Understanding the self employment and business enterprises of apiculture.	К3

UNIT I

Honeybee – Systematic position – Species of Honey bees – Life history of Honey bee – behaviour – swarming – Pheromone.

UNIT II

Bee colony – Castes – natural colonies and their yield – Types of bee hives – Structure – location, care and management.

UNIT III

Apiary – Care and Management – Artificial bee hives – types – construction of space frames – Selection of sites – Handling – Maintenance – Instruments employed in Apiary – Extraction instruments.

UNIT IV

Honey – Composition – uses – Bee wax and its uses – yield in national and international market – Diseases of honey bees and their control methods.

UNIT V

Apiculture as Self - employment venture - Preparing proposals for financial assistance and funding agencies - Economics of bee culture.

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Apiculture	N.Arumugam,.K.V. Jayashree, and C.S Tharadevi	Saras Publications Periyavilai, Nagercoil, Tamil Nadu	2013
2.	Honey bees and their management in India	Mishra, R.C	ICAR, Publications, New Delhi.	1985
3.	Apiculture	J. K. Gupta V. V. Belavadi and Sh. Mohinder Singh	ICAR Agremoon publishers	2005
4.	Hand book of bee keeping	Sharma, P. and Singh L.	Controller Printing and Stationery, Chandigarh.	1987
5.	Introduction to Bee keeping	Rare, S.	Vikas Publishing house. New Delhi.	1998
6.	Bee Keeping	Singh, S	ICAR, Publications New Delhi	1982
7.	Economics zoology	Shukla, G.S. and Upadhyay V.B	Rastogi Publication, Meerut.	1997

REFERENCE BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	The Beekeeper's Handbook	Diana Sammataro, Alphonse Avitabile and Dewey M. Caron	Publisher Cornell University Press	2011
2.	The Beekeeper's Lament : How One Man and Half a Billion Honey Bees	Hannah Nordhaus	HarperCollins Publishers Inc.	2011

3.	The Bee-friendly Beekeeper : A Sustainable Approach	David Heaf	Northern Bee Books Publication, Oxford, United Kingdom.	2015
4.	The Hive	Bee Wilson	Hodder & Stoughton General Division, Imprint John Murray Publishers Ltd Publication, London,	2005
5.	The ABC and XYZ of Bee culture	Morse, R.A	United Kingdom 40th edition A.1 Root & co., Ohio.	1990
6.	Honey Bees, Disease, Parasites, Pests, Predators and their Management	Nagaraja.N & Rajagopal.D	MJP Publishers , Chennai.	2000

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	M	S	M	S
CO2	S	M	M	S	S
CO3	M	S	M	S	S
CO4	S	S	S	M	S
CO5	S	M	S	M	M

Core	M.Sc. Biotechnology 2019 - 20			
Practical-V				
Code: M19PBTP05	PRACTICAL - V - PLANT AND ANIMAL			
Credit: 4	BIOTECHNOLOGY			

Objective

To provide hands on training in the field of plant and animal biotechnology.

Course Outcomes

By the end of the course, the student should be able to:

CO Number	CO Statement	Knowledge Level
Plant Bio	otechnology	
CO1	Understand media preparation, Sterilization Techniques foe animal and plant tissue culture techniques.	K2
CO2	Perform organ cultures, Callus propagation, organogenesis, transfer of plants, hardening process ,Protoplast isolation and Anther and pollen cultures	K4
CO3	Learn about gene transfer technique	K1
CO4	Prepare single cell suspension from spleen and thymus	КЗ
CO5	Know the technique of Cell counting and cell viability, Trypsinization of monolayer and sub-culturing, Embryonated Egg inoculation and Preparation of chick embryo fibroblast culture (monolayer	K4

Plant Biotechnology

- 1. Preparation of media.
- 2. Sterilization Techniques.
- 3. Organ cultures.
- 4. Callus propagation, organogenesis, transfer of plants, hardening process.
- 5. Protoplast isolation.
- 6. Anther and pollen cultures production of haploids.
- 7. Isolation of plant DNA
- 8. Agrobacterium mediated Gene Transfer (Demo)

Animal Biotechnology

- 1. Preparation of tissue culture media and membrane filtration.
- 2. Preparation of single cell suspension from spleen and thymus.
- 3. Cell counting and cell viability.
- 4. Trypsinization of monolayer and sub-culturing.
- 5. Embryonated Egg inoculation.
- 6. Preparation of chick embryo fibroblast culture (monolayer)

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Plant Biotechnology laboratory Manual	Anjana,R and Roy,P.P	Kerala Agricultural University, Ernakulum, Kerala	2014
2.	Biotechnology Procedures and Experiments Handbook	S. Harisha,	Infinity Science Press LLC. and Laxmi Publications Pvt. Ltd	2007
3.	A Practical Manual On Basic Techniques In Biotechnology & Nanotechnology	S. R. Madhan Shankar & E. M. Rajesh	International E – Publication	2013
4.	Biotechnology, (Practical Manual Series-4)	K.M. Thara	BookVistas (New Delhi, India)	

REFERENCE BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Plant Biotechnology: Practical Manual	C.C. Giri and Archana Giri	I K International Publications, New Delhi.	2007
2.	Practical Book of Biotechnology & Plant Tissue Culture	Nagar Santosh and Adhav Madhavi	S Chand & Company	2010
3.	Practical Biotechnology: Methods & Protocols	S. Janarthanan and S.Vincent	Universities Press India Pvt.Ltd.	2007
4.	Culture of Animal Cells,	I. Freshney	5th Edition, Wiley- Liss	2005
5.	Animal Cell Culture Techniques	Ed. Martin Clynes	Springer	1998
6.	Animal Cell Culture - Practical Approach	Ed. John R.W. Masters	3rd Edition, Oxford University Press	2000

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5
CO1	M	M	S	S	S
CO2	S	M	M	S	S
CO3	M	S	M	S	S
CO4	S	S	S	M	S
CO5	S	M	S	M	M

Core Practical-VI	M.Sc. Biotechnology	2019 - 2020
Code: M19PBTP06	PRACTICAL -VI - ENVIRONME	ENTAL
Credit: 4	BIOTECHNOLOGY, PROTEOMICS AN	D GENOMICS

Objective

To provide hands on training in environmental biotechnology, proteomics and genomics.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Determine dissolved sulphate, residual chlorine, silicate and BOD in water	K2
CO4	Perform the effect of heavy metal toxicity on behavioral changes in fish and Impact of heavy metal on oxygen consumption of fresh water fish	K4
CO7	ORF-Predict and Genome Annotation- GEN SCAN	КЗ
CO9	Protein Secondary and Tertiary structure analysis- EXPASY Tools	К3
CO10	Molecular Docking	K2

- 1. Determination of dissolved sulphate in water
- 2. Determination of residual chlorine
- 3. Determination of silicate in water
- 4. Effect of heavy metal toxicity on behavioral changes in fish
- 5. Impact of heavy metal on oxygen consumption of fresh water fish
- 6. Determination of BOD in water
- 7. ORF-Prediction
- 8. Genome Annotation- GEN SCAN
- 9. Protein Secondary and Tertiary structure analysis- EXPASY Tools.
- 10. In-silico analysis Molecular Docking

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Environmental			
	Sampling and	Maria Csuros	CRC Press	
	Analysis: Lab			1997
	Manual			

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5
CO1	M	M	S	S	S
CO2	S	M	M	S	S
CO3	M	S	M	S	S
CO4	S	S	S	M	S
CO5	S	M	S	M	M

SEMESTER IV

Core -XII	M.Sc., Biotechnology	2019-2021	
Code: M19PBT12	RESEARCH METHODOLOGY AND RESEARCH		
Credits: 4	PROPOSAL DEVELOPMENT	•	

Objective

To develop a research orientated approach among the students and to acquaint them with fundamentals of research methods.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Describe the fundamental research; Definitions, characteristics, types of research, topic selection and problem identification	K1 & K2
CO2	Understand the Literature review, Source of information, Organization of information on index cards. Objectives Formulation of the research objectives.	K2
CO3	Understand the basic Research methodology, Sampling, Plan and Methods of for data collection, Ethical considerations	К3
CO4	Develop a deeper understanding the work Plan, Major components and outline of research, Summary, Research report and proposal writing	КЗ
CO5	Understand the concept of measures of Mean, Analysis of Variance and use of bioinformatics tools	K3 & K4

UNIT I

Introduction to research; Definitions and characteristics of research; Types of research; Main components of any research work. Topic Selection: Learning Objectives; Problem identification; Criteria for prioritizing problems for research.

UNIT II

Literature review: Uses of literature review; Source of information; Organization of information on index cards. Objectives: Learning Objectives; Definitions; Formulation of the research objectives.

UNIT III

Research methodologies: Study population; Variables; Sampling; Sample size determination; Plan for data collection; Methods of data collection; Plan for data processing and analysis; Ethical considerations.

UNIT IV

Work Plan; Major components and outline of the different phases in a research process; Summary of the major components of a research proposal; Fieldwork; Preparation of Research report – Thesis - dissertation - Manuscript/research article – monograph/review.

UNIT V

Measures of Mean, Median and Mode: Standard Deviation and Standard Error. Regression and Correlation coefficient analysis; Student's ttest; Analysis of Variance (ANOVA); Chi-Square test. Bioinformatics: BLAST N & P, Gene discovery using EST. Genbank Database- NCBI, EMBL & DDBJ.

REFERENCE BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.		A Wayne W. or Daniel,	Wiley Series in Probability and Statistics, 7E	1996
2.	Experiments of Instrumental methods, Laboratory Manual	Charles Norwood Reilley A and Donald Turner Sawyer	McGraw-Hill, New York	1961
3.	Instrumental Methods Analysis	of Lynme L.Meritt J.R.John Dean	East West Press Pvt Ltd	1965
4.	Introduction to Bioinformatics: Protein Purification	Atwood, T. K. and Parry-Smith, D. J. Ed by Robert Scopes,	Springer Verlag Publication	1982

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Laboratory Instrumentation	M. Prakash, C.K.Arora	Anmol Publications Pvt Ltd.,	2005
2.	Introductory Statistics	Prem S. Mann	John Wiley and Sons(ASIA) Pvt. Ltd. Fifth Edition.	2004
3.	Bioinformatics Methods and Applications Genomics, Proteomics, and Drug Discovery	S.C. Rastogi, N. Mendiratta, and P. Rastogi	PHI Learning Private Limited	2013

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	M	S
CO2	S	S	M	M	M
CO3	M	S	S	S	S
CO4	S	S	S	M	M
CO5	M	S	S	S	S

Extra Disciplinary Course

EDC - I	M.Sc., Biotechnology 2019 - 20		
Code: M19EBT01	ACDODIOTECHOLOCV		
Credit: 4	AGROBIOTECHOLOGY		

Objective

To emphasis on development of entrepreneurial potential and skills amongst the students in agricultural biotechnology.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Impart knowledge of types of earthwarm, Vermicompost production method and it nutrient values	K2
CO2	Understand the knowledge of biofertilizer production and its uses.	K2
СОЗ	Make knowledgeable and learn about chemical fertilizers of merits and demerits	K4
CO4	Understand the significance of management of pests and diseases.	КЗ
CO5	Knowledge about farm implementation, economic importance of vermicomposting.	K4

UNIT I

Vermicomposting - Definition, introduction and scope: Ecological classification: Humus feeders, Humus formers, Useful, local and exotic species of earthworms, Vermicomposting - Methods - Advantages - Nutritional Composition of Vermicompost.

UNIT II

Biofertilizers: Introduction, Nitrogen fixing Bacteria, mycorrizha and phosphate solubilizing Bacteria. Types of organic manure-Green manure, farm yard manure, farm compost, urban waste compost, rural waste compost.

UNIT III

Chemical Fertilizers: Chemical fertilizers and their impact on environment. Pollution of soil, surface and ground water due to over use of fertilizers and remedial measures,

UNIT IV

Pesticides: Introduction, relevance in management of pests and diseases, ill-effects with particular reference to bio-magnification and other environmental hazards.

UNIT V

Organic Farming: Economics of Farming: Economics and basic knowledge of farm implements -ploughs, spray pumps, tractors. Harvesters and thrashers - harvest combines, reapers, chaff cutters, sugarcane crushers.

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1	Ecology of earthworms	Edwards, C.A. and Bohlen, P.J.	Chapman and hall.	1996
2	Agroecology: The Science of Sustainable Agriculture	Altieri, M.	Westview Press, Boulder, CO	1990
3	Sustainability through organic farming.	Joshi, M., Setty, T.K.P. and Prabhakarasetty	Kalyani Publishers	2006
		111		

1	Principles of	Reddy, T. Y. and	Kalyani Publishers.	2013
4	Agronomy.	Reddy, G.H.S	Kaiyaiii Fublishers.	2013

REFERENCE BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1	Organic Agriculture	Kristensen, P., Taji, A. and Reganold, J.	A Global Perspective. CSIRO Press	2006
2	Handbook of Agricultural Sciences	Singh, S.S., Gupta. P. and Gupta, A.K	Kalyani Pub	1994

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	M	M	M	S
CO2	M	M	M	S	S
соз	S	S	M	M	S
CO4	S	M	S	S	S
CO5	S	S	S	M	S

EDC-II	M.Sc. Biotechnology	2019 - 2020
Code: M19EBT02	HEALTH CARE AND ENVIRONMENTAL	
Credit: 4	BIOTECHNOLOGY	

Objective

To make the students understand public health and keep healthy environment.

Course Outcomes

On the successful completion of the course, students will be able to

со	Statement	Knowledge Level
CO1	Understand the Public Health	K1
CO2	Understand the concepts of Epidemiology	K2
CO3	Important environmental issues and protection	К3
CO4	Describe the use of biotechnological processes to protect the environment	К3
CO5	Understand the principle of industrial waste management	К3

UNIT I

Introduction to Public Health Evolution of Public Health. Important Public Health Acts, Health problems of developed and developing countries, Health problems in India, Environment and Health.

UNIT II

Basic Epidemiology Definition and Concepts of Epidemiology, Concepts of Health and Disease. Role of Genetics in Health and Disease, Levels of Prevention, Types of Epidemiology, Uses of Epidemiology.

UNIT III

Basic concepts and global issues-Global warming & Acid rain. Pollution measurements- air and water. Biosensor in environmental monitoring. Bioremediation of environmental pollutants in soil and water- oils, heavy metals and detergents.

UNIT IV

Biodegradation of xenobiotics- Ecological considerations, decay behavior and degradative plasmids, hydrocarbon, hydrocarbon substitutes, pesticides and surfactants. Phytoremediation.

UNIT V

Air pollution and its control through biotechnology. Waste water treatment: Physical, chemical and biological treatment processes. Various industrial effluent treatment methods- Sugar, distillery, dairy, tannery and pharmaceutical industries.

TEXT BOOKS:

S. No.	Title of the Book	Author	Publisher	Year of Publication
1	Environmental Science and Biotechnology: theory	Murugesan AG and Rajakumari	MJP Publishers	2008
2	and Techniques Environmental Biology	C. Sharma PD	Rastogi Publications	1994

REFERENCE BOOKS:

S. No.	Title of the B	ook	Author	Publisher	Year of
					Publication
	Environmental				
1	Biotechnology	and	Eugenia	Table and Proprie	2000
	cleaner		J.Olguin	Tayloir and Francis	2000
	Bioprocesses				

Mapping with Programme Outcomes

cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	M
CO2	S	S	S	S	M
соз	S	S	M	S	M
CO4	S	M	S	M	M
CO5	S	M	M	S	M